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The inviscid barotropic vorticity equation is integrated under a variety of assumed initial 
and boundary conditions corresponding to linear and nonlinear box modes, forced non- 
linear box modes, and linear and nonlinear Rosshy waves (with and without mean advection). 
The former two classes of problems arc defined within a closed domain. The latter is 
partially or totally open to a specified external environment and therefore represents 
prototype limited-area calculations for the ocean. To determine the extent to which the 
accuracy and efficiency of limited-area calculations depend on the numerical integration 
scheme, each test problem is solved independently using the finite-difference (FD), finite- 
clement (FE), and pseudospectral (PS) techniques. The :hrce numerical models differ 
primarily in the formal accuracy of their spatial approximations and their treatment of 
vorticity at outflow points along the boundary. The: FII 1rwde1 employs a centered second- 
order differencing scheme and requires an extrapolatory (computational) boundary condi- 
tion to fix the values of vorticity at outflow boundary points. The IX model, which re- 
presents # aud 5 as a summation of piecewise linear cicmenls, is vf fourth order for the 
linearized one-dimensional advcctive equation. Further, a technique is developed by which 
the dctcrmination of the interior values of < is dccouplcd from that of the boundary values; 
hence, the vorticity boundary conditions can be implemented without iterative techniques. 
Lastly, the “inlinite-order” t?S model avoids the assumption of lateral pcriodicity by ex- 
panding $ and 5 in a double scrics of Chcbyshcv polynomials. The resulting vorticity 
equation is solved in the spectral domain using a modified alternating dimxtion implicit 
method. .41i three models arc of second order in time and have conservative formulations 
of the nonlinear terms. Integrations of modcratc length (5-10 periods of the known analytic 
solution) arc performed to dctcrmine the accuracy, stahility, and efficiency of each model 
as a function of problem class and the associated physical and computational nondimcn- 
sional parameters. The most important of these parameters arc e, the Rossby number; Y, the 
numher of qpatial degrees of freedom (grid points, expansion functions, etc.) per haif 
wavelength of the rcfcrence solution; and ‘7, the number of time steps per period of the 
rcfcrence solution. The latter two parameters are nondimensional measures of the spatial 
and temporal resolution of the numerical approximation. Thece tests show that all three 
models are, in general, capable of delivering stable and efiicient solutions to linear and 
weakly nonlinear problems in open domains (0 :: c b: 0.4, 4 ::: Y G 10, 64 g 7 < 125). 
Despite their added complexity, however, the FE and Ps models arc on the average. 4 and 
15 times more accurate, respectively, than the FD model even taking into account its 
incrcascd ciiicicncy. The results also suggest that given a judicious sclcction of a frictional 
(filtering) mechanism an&or computational boundary condition (to suppt~s the accuttiula- 
tion of grid-scale features), each of the models can be made similarly accurate for highly 
nonlinear calculations (c > 0.4). 

* Present address: Clark Laboratory, Woods Hole Oceanographic Institution, Woods liole, 
Mass. 02543. 
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1. INTRODUCTION 

Limited-area modeling of the oceans is important for both scientific and (potentially) 
practical problems including (1) simulations of geographically and/or dynamically 
distinct subregions of the ocean, and (2) idealized dynamical studies of oceanic 
processes and models [I]. Examples of the first kind or regional problems are limited- 
area ocean forecasting [2], coastal modeling [3], and the simulation of intense current 
systems and their associated instabilities [4]. Studies of the second kind are useful for 
the determination of the dependence of regional dynamic balances on specific model 
parameters including environmental factors, as have been done with eddy-resolving 
simulations of the general circulation of entire ocean basins [5]. For limited-area 
ocean problems, the effects of changes in the externally imposed bounding conditions 
can also be addressed in the form of idealized modeling studies. Both categories of 
limited-area problems relate in a significant way to ongoing and anticipated field 
measurements from a variety of modern techniques including novel four-dimensional 
synoptic data sets (i.e., deep ocean regional weather maps) [6-S] and satellite surveys 
of the upper ocean [9]. 

The general circulation of the ocean and its variability are known to be made up of 
different regions of different dynamical characteristics [IO]. For an oceanic regime 
which is spatially statistically homogeneous, local dynamic studies can be made with 
periodic boundary condition models. Such models assume that the physics is locally 
determined and essentially independent of information such as scales and amplitudes 
which could be generated elsewhere and continuously transported across the 
boundaries. Such “process” models have been used to investigate the dynamical 
properties of the mesoscale eddy field under simulated midocean conditions in regions 
assumed to be well removed from boundary influences [11, 121. As has become 
increasingly clear both from the empirical data base as well as a growing number of 
mesoscale-resolution ocean circulation studies, the most interesting subregions are 
inhomogeneous [5]. For such regions (examples of which have been given above), as 
well as for many other limited-area hydrodynamic problems, other more complicated 
boundary conditions are necessary. 

The determination of valid and convenient forms of boundary conditions, 
particularly at points of outflow, constitutes a major, essentially unresolved, problem 
in the modeling of many hydrodynamic systems over regional domains. The choice of 
boundary conditions involves a number of physical, mathematical, and numerical 
(or computational) considerations. On large and regional scales, the conditions should 
correctly represent or parameterize the interaction of the (arbitrary) volume of 
fluid with its surroundings. Smaller scale physical phenomena generated internally 
within the region should not be trapped but allowed to pass out of the domain; i.e., 
the model boundary should be transparent for such small-scale processes. The 
mathematical problem consisting of model equations and boundary conditions should 
be well posed in some reasonable sense; e.g., as defined by Oliger and Sundstrom [13]. 
The numerical scheme chosen for computational purposes should be of desired 
accuracy and acceptable efficiency. 
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In its discrete (computational) form, a given numerical model may involve the use 
of boundary information which is not in principle required in the well-posed analytical 
problem. Such auxiliary information is known as a computational boundary condition 
and should be chosen for convenience and efficiency, but should not in princip!e 
affect physical results. In practice, specific problems appear to require special con- 
ditions and a triai and error approach is usually indicated. Rlternate choices c! 
boundary conditions do, however, aKect the accuracy and stability of regio!?ai 
computations: iilusirative examples are given below. 

Ic this paper we evaluate the feasibility of performing idealized open ocea:; caicu- 
lations, using as a physical model the vorticity equation for barotropic (i.e.. dcpth- 
independent) flow in an inviscid ocean of constant depth. in an eariy and pioneering 
atmospheric forecasting study, Charney, Fjortoft, and von Neumann [14j originaily 
argued heuristically that consistent solutions to the rnviscid barotropic vorticitl 
equation could be obtained by specifying values of the streamfunction at ali boundary 
poinic. and values of vorticity at only inflow points. Sundstrom [I51 claims to have 
established the well-posedness of the analytic Charney 47jortol.t .von Neumann 
problem. This result has been questioned recentiy, however, by Benner and .&&eden 
[16j. who suggest that the smoothness of solutions to the barotropic vorticity equa:ion 
subjcci to iAow boundary conditions is in doubt due to the ncccscary occur:-encc oi 
pcints on th.e boundary where the flow is tangential. 

f:nless iterative or implicit numerical techniques or one-sided diflcrencing hchcmes 
are used, iaviscid calcula:ions with the discrete barocropic vor!icity equation require 
some auxiliary relationship to prescribe vorticity at outflow boundary points. Se*,~ai 
types of boundary conditions have been used in attempts to zvoid problems as;ocia:ed 
\vith outflow. including extrapolatory formulas [I 5, 17j and radiation conditions 
[f 8. I9]. For systems such as that investigated here- which admit dispcr-sit,e \l<alje 
solutions, appropriate forms of such boundary conditions are dif5cult to determine 
and of?cn quite compiex 1201. In addition, the resultin, 0 numericai scheme is ofte!~ 
sensirike to the specific choice of computational boundary condition. The :jri_ci:?ai 
ca!culatiol:s made by Charney. Fjortoft, and van Neumann [i4]. for instance. ~+.e;e 
weakiy unsiabie due to their choice of computational boundary condition. In dnot5cr 
example. Shapiro and O’Brien [21] have also shown that, while the me:hod of 
characteristics works well as a computational boundary condition, speciEcation of 
known or presumed values of votticity at outflow boul:dary points may lead to 
numerical instahiliey. 

Keeping in mind these potential areas of complication, WC have attempt& i:: 
explore the possibility of barotropic regional ocean modeling by investigating :~nd 
comparing the accuracy. efficiency, and stability of three limited-area nL:merical 
models hased, respectively, on the finite-dilrerence, finite-eleme;lt, and spectral 
approximation methods [22]. The physical boundary conditions used are the Charney- 
Fjortoft-von Neumann conditions. The calculations are mostly inviscid bur in some 
cases a dissipative filter is included. The three codes differ substantialiy in -ihe detailc 
and formai accuracy of their spatial discretization schemes and in their treat:neni or 
the vorticity at outflow. It should therefore be stressed at the outset that these models 
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have not been chosen to provide an unbiased intercomparison of finite-difference, 
finite-element, and pseudospectral techniques in general. Our intent rather has been 
to investigate a range of computational approaches representing both traditional and 
somewhat more novel numerical methods and to choose that model most suited to 
our limited-area modeling needs. It could not be anticipated beforehand, for instance, 
how easily and efficiently the higher-order finite-element and pseudospectral schemes 
could be adapted to regional modeling applications. The statement of the non- 
dimensional vorticity equation and a description of the numerical techniques are given 
in Sections 2 and 3. 

The three models have been tested and intercompared for a variety of prototype 
physical problems in closed and open basins and over a range of the nondimensional 
physical and computational parameters corresponding to each problem class. First, 
the unforced (homogeneous) solutions to the linear and nonlinear vorticity equation 
in a closed basin are found and compared to the known exact and perturbation 
solutions for linear and nonlinear box modes, respectively (Section 4). With the 
addition of a body force, various exact nonlinear closed-basin solutions are con- 
structed and tested (Section 5). In an infinite domain, linear and nonlinear Rossby 
wave solutions are well known to be possible. These are dispersive planetary waves, 
whose existence depends on the restoring force provided by the earth’s rotation. 
Limited-area open domain Rossby wave solutions are obtained, discussed, and 
intercompared in Section 6. 

Model-model intercomparisons of this type have been carried out for simple 
advective problems in closed basins (e.g., Orszag and Israeli [22]). To our knowledge, 
however, this is the first such study that encompasses limited-area hydrodynamic 
modeling problems as well. Following the recent acquisition of a reliable midocean 
synoptic data base [6], one of the three models to be discussed (the finite-element) has 
now been applied to a series of barotropic regional forecast studies. Preliminary test 
results have been reported elsewhere [23, 241. 

2. MODELING EQUATIONS, METHODOLOGY, AND FORMAT OF RFSULTS 

We consider the barotropic vorticity equation on a p-plane, which can be written 
in dimensional form as 

I 
a -2 
at JCsl,, )I (5 + f) = Qx, Y>, 0 .< x < L, ) 0 < y < L, . (1) 

where 

and 
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fn addition, 

is the relationship between streamfunction (3) and vorticity ([), and F(x, y) represents 
the effects of a body force, if any. Dissipation has been neglected for three reasons. 
First, the inviscid system poses a simpler physical and numerical problem, one for 
which many analytic and perturbation solutions are available. This is the basis of our 
testing of the limited-area models described in Section 3. Second, quadratic conser- 
vation iaws are available for nondissipative physical and numerical systems. This 
property also contributes to the evaluation of model performance. Lastly, by ignoring 
explicit higher-order friction, we sidestep for the moment the question of the correct 
specification of vorticity boundary conditions on outflow, which are not formally 
needed for integration of the inviscid system. The assumption of inviscid dynamics 
does, however, require that greater care be taken to construct a numerical scheme 
which is stable in the absence of explicit dissipative (that is, smoothing) mechanisms. 
AS we shall see, such filtering is in fact necessary to maintain stability in some cases. 

If we now nondimensionalize X, y, t, and 4 by d, d, (/3d)-‘, and (V,,d), respectively. 
then (1) becomes, in nondimensional form. 

where the Rossby number 

E = V,,//3d2 

and 
xn =. L,id, y, = &id. 

The parameters d and VO are taken to be the characteristic length and velocity scaies 
of the anticipated field of motion. Note that the length scale d does not correspond 
to the basin dimensions L, or L, ; hence, xB and y, are. in general, greater than one. 

The modeling strategy developed herein involves the integration of Eq. (3) for 
several sets of initial and boundary conditions corresponding to succeedingly more 
complex physical phenomena in closed and open domains. The problems we will 
consider include linear and nonlinear box modes, forced nonlinear box modes, and 
linear and nonlinear Rossby waves. The sequence of linear problems (box modes and 
Rossby waves) serve as pivotal calculations for which no boundary values of vorticity 
are formally required. With the addition of nonlinearity, both accuracy and stabi!ity 
of model calculations can be assessed as functions of E for closed-domain problems 
in which strict conservation laws apply (nonlinear and forced nonlinear box modes), 
and totally open domain problems in which interaction with the surrounding 
environment is possible and the question of computational boundary conditions 
arises (nonlinear Rossby waves). The former experiments are the most easily under- 
stood. The latter series of tests-particularly the nonlinear Rossby waves with mean 
advection-are those most relevant to future open ocean modeling applications. 
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( e) 

(d) 

0.1 
( f) 

FIG. 1. Linear box mode solution at t = 10 periods with (7, m, n) = (K&1,1). (a, b), (5, #) 
FD model, Y = 16(2)lj2, CI = 0.3, 0.1); (c, cl), (I, #): FE model, Y = 16(2)1/“, CT = (0.3, 0.1); (e, f) 
(c, $): PS model, v  = 8(2)lj2, CI = (0.3, 0.1). 
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I- 

0,08 

I 
I 

- 
0,008 

FIG. 2. As Fig. 1. (a, b), (c, #‘): FD model, v = 16(2)li2, CI = (0.08, 0.02); (cc, d), (C’, JI?: 

FE model, Y = 16(2)112, CI = (4.0, 1.0) x 10es; (e. f), (c, $‘): PS model, Y = S(Z)1/z, CI = (8.0, 
3.0) x IQ-*. 
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Each problem thus defined has been solved using three independent (and quite 
dilTerent) numerical techniques. The finite-difference (FD) scheme is second-order 
accurate in space and time and has the advantage of being easily coded. It should, 
in addition, be the most efficient of the three models for a fixed number of spatial 
degrees of freedom. The finite-element (FE) method, though somewhat more compli- 
cated than the FD scheme, is known to be of fourth order for certain advective 
problems [25]. In general, we expect smaller errors with the FE model, but at a slightly 
higher computational cost. Lastly, pseudospectral (PS) approximation techniques [22) 
offer greatly reduced spatial truncation errors in comparison to both of the other two 
methods. The PS model is, therefore, formally the most accurate but thereby it may be 
subject to instabilities not seen in the FD formulation-see, for instance, Section 6. 
Of the three models, it is also the most difficult to code (although it can be made 
comparably efficient if care is taken to optimize the spectral transforms). 

Since analytic or perturbation solutions are available for many of the prototype 
physical problems examined herein, direct measures of numerical error are available 
for each model. Of particular interest are the RMS errors in streamfunction and 
vorticity, and the normalized difference in integrated kinetic energy as a function of 
time; these area-integrated error measures are defined as 

where subscripts c and a refer to the computed and analytic solutions, respectively, 
and a primed quantity represents a difference from the reference solution. Using error 
measures of this sort, it is possible to ascertain the accuracy of each model. 

Table I summarizes the results of all the experiments as a function of problem type 
and the associated nondimensional parameters. The first nine columns of Table I 
refer to the experiment number and the (not necessarily independent) quantities 

(9 E 
(ii) & = yB 

(iii) N 

Rossby number 

Nondimensional basin size 

Number of spatial degrees of freedom in each 
direction 

(iv) h = XB/(N - I) Nondimensional mesh interval 

(4 A Number of half wavelengths or turning points 
of the reference solution within the domain 
(nondimensional measure of the structure of 
the reference solution) 
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(vi) v = (N - 1)/O Nondimensional spatial resolution (number of 
degrees of freedom per turning point of the 
reference solution) 

(vii) At Nondimensional time increment 

(viii) 7j Nondimensional temporal resolution (number of 
time steps per period of the reference solution). 

The last four columns tabulate the duration of the experiment (in periods) and the 
final values of the three error measures defined above. The duration of simulations 
which suffered numerical instability are denoted by brackets. No RMS error values 
are listed for these experiments. Intermediate columns of Table I are reserved for 
special parameters representative of each problem class. These will be introduced in 
Sections 4 through 6. 

Accompanying Table 1 is a series of figures which show in more detail the results 
of one experiment for each problem category. Figures I through 3 are typical. The 
first two figures give contour plots of 5 and y$ and 5’ and #‘, respectively, at the end 
of the simulations for each model. Figure 3 shows the corresponding variation with 
time of RlMS(i’) and RMS(+) f or each model. Contouring intervals are given in the 
figure captions and at the lower right-hand corner of each contour map. 

The former (contour) plots give a visual estimate of the wavenumber content of 

.30 

.28 

.26 

.24 

.22 

.20 

FIG. 3. As Fig. 1. (a, b), RMS(<‘, 4’): FD model, Y = 16(Z)““, 0 < t < 10 periods; FE mode:, 
v  --: 16(2)‘i2, 0 < t < 5 periods; PS model, Y = 8(2)‘!2, 0 < I G: 10 periods. 
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the computed solution (and hence an estimate of its formal spatial accuracy) and 
reveal any localized features (physical or numerical) that might occur. This is parti- 
cularly important in those nonlinear experiments for which only approximate or 
linearized reference solutions are available and for which the RMS errors are therefore 
difficult to interpret. 

3. MODEL FORhlULATION 

3. I. Finite-Diference Model 

A traditional discrete formulation of Eq. (3) results by approximating all derivatives 
by second-order centered finite differences. The advantages of finite differences are 
the simplicity of the required coding and our accumulated experience of using this 
classical technique. With centered (leapfrog) time differencing, the vorticity and 
Poisson equations become 

and 

where finite-difference operators Sx(3/‘“) = #& - @-,,i and 6,,(@) = z/& - 
2#1:,~ -I- #f-I,j . The Arakawa [26] Jacobian .I* is given by the finite-difference appro- 
ximation to the equivalent form ${[#,<, - $,[,] + [($&,), - (#Q,] + [-(&& + 
(4/1,{),]}. This expression conserves vorticity, energy, and enstrophy when integrated 
over a closed domain The Poisson equation (5b) with Dirichlet boundary conditions 
is approximated by the standard five-point Laplacian operator and solved with the 
NCAR cyclic reduction subroutine package Finite differences are of second-order 
accuracy, so the total discretization error is 0(h2 + dt2). 

For linear problems (E = 0), vorticity on the boundary 2 does not enter the 
problem in either the vorticity equation or the Poisson equation. For nonlinear 
problems (E $: 0), vorticity is specified at inflow points according to the Charney- 
Fjortoft-von Neumann boundary condition [19]. Centered finite differences require 
boundary data everywhere, and in contrast to the analytic problem, some auxiliary 
relationship (that is, a computational boundary condition) must be assumed at our/low 
points in order to determine the vorticity there (unless an iterative technique is used 
to fix 5 on outflow). 

Optimally, the computational boundaries of an open ocean model should be 
transparent to signals impinging on them. Thus, the formation of boundary layers on, 
or wave reflections from, the boundary are undesirable. The most successful compu- 
tational boundary condition considered in this study is 
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which was introduced by Sundstrom [17]. Here B, R - 1, and R - 2 represent a 
boundary point and its first and second normal interior neighbors. Davies [I 81 
demonstrated the stability propcrtics of this closure for a variety of nonlinear 
problems. 

There are several possible physical interpretations of statement (6): Either (a) it is 
equivalent to equating the time and spatial averages of [ at point R - 1 (a kind of 
smoothness condition at outflow); (b) it is equivalent to ilt : ~~1;~~) where c = dx/.df 
(a “local” wave equation); or (c) it is a low-order spatial. extrapolation scheme. 

In order to implement the Sundstrom/Davies formula, the quantity jg+i is 
eliminated by application of the vorticity equation evaluated at the point B -- 1, 
f := k dt. This yields an implicit set of equations for the boundary vorticity. Formaliy, 
this requires the inversion of a heptadiagonal matrix with cyclic ordering of the 
points. However, it can be shown that by elimination of those boundary points which 
are corner neighbors, a simple tridiagonal system results, provided there is at least 
one inflow point (Appendix). Note that the boundary vorticity is calculated after the 
interior vorticity and the streamfunction. 

Other computational boundary conditions investigated in this siudy are tie 
extrapolation Ink = 2[::: - ii:: [In] and the condiion ir = ia corresponding to 
the exact specification of the outflow vorticity. Note once again that thcsc compu- 
tational boundary conditions are used to determine values of vorticity at outflow 
boundary points only; elsewhere on the boundary, independent values of vorticity 
are supplied in accordance with the Charney-Fjortoft--van Neumann prescription. 

3.2. Finite-Element Model 

In the finite-element formulation, we assume a set of basic functions consisting of 
piecewise polynomials, the simplest being piecewise linear elements arranged in a 
rectangular lattice. In one dimension, each element is a chapeau or hill function, and 
in two dimensions, a pyramidal function, each centered on the lattice point with 
base width 2h [25]. Then the basis functions have the property 

w,, = 1 if p-=q, 
(7) 

-0 if p ,/ q, 

where zn is the pth lattice point. All fields can be expressed in terms of a summation 
of the basis functions; for instance, 

where x is a general point within the domain. 
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The weights #, and 5, are obtained by the Galerkin procedure. Substitute (8) and (9) 
into the vorticity equation, multiply by a basis function, and integrate over the 
entire region. Since each element overlaps those adjacent to it, in general, each 
equation will contain terms from its eight neighbors. 

For closed-domain problems, we use centered time differences. The resulting 
finite-element form of the vorticity equation is 

where 

In partially and completely open domains, however, a second-order Adams-Bashforth 
time-differencing scheme is used to avoid computational instability. In such cases, 

/%I((~‘-‘) = M(5”) - dt{$Q” - +Q”-‘}. (lob) 

The mass matrix M has the entries M, = ss c$&, dA. M is factorable into two parts, 
M 7.: Ws) @ W(Y), where @ denotes tensor multiplication and the matrices Wz) and 
W(Y) are tridiagonal with the local form A(1 4 1). The operator Ws) @ W(Y) can be 
interpreted to mean successive multiplications-first rowwise, then columnwise- by 
the matrix W = W@) = W(Y). Note that the superscripts (x) and ( y) refer to the 
order in which the tridiagonal multiplications are done. At each time step, therefore, 
Eq. (IO) can be written 

&f(Ck") = W(Z) @) j$AY'(["il) = pk-I, 

where ck-l-l is the N x N matrix of values of 5 at time step (k + 1). In this form, it is 
clear that Eq. (lOa) is equivalent to two tridiagonal matrix systems each of size N x N. 
The mass matrix can therefore be readily inverted. Note that if W is set equal to the 
identity matrix, Eq. (lOa) reduces to the finite-difference form (5a). The Jacobian term 
is precisely the Arakawa Jacobian employed with tinite differences [26]. In fact, the 
Arakawa form is derivable from the finite-element formulation [27]. 

Fix [25] has shown that linear elements for the linearized advective equation 
it ;- Ui& = 0 produce fourth-order accurate phase errors. To maintain this accuracy 
for the vorticity equation, the solution of the Poisson equation for the streamfunction 
must also be of fourth order. This is accomplished by the method of deferred correc- 
tions [28]. Note that 

K(l/) = h2 v2* + ;2 h4 (v4 - 2 &) * + ah% 
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where K is the usual five-point Laplacian 

Therefore two successive Poisson solutions yield $J to fourth order in the following 
manner. First, obtain a second-order solution, I+!+ , from K(#,) = h21,‘. Then, a 
fourth-order estimate of 4 is the solution to 

Finite elements require more computational work per time step than do finite 
differences. First, two tridiagonal inversions must be performed to determine the 
vorticity field, contrasted with a simple direct substitution in finite differences. Second, 
two calls must be made to the Poisson solver instead of one. The significant increase 
in accuracy plus the virtue of using a technique based on a variational principle 
justify this increased computational effort in many appiications, as indeed they will 
here (see, for instance, Section 6). 

In the finite-element model, vorticity boundary conditions are implemented in the 
foilowing manner. For ease of presentation, we introduce three types of points and 
their respective computational molecules m, that is, their local contribution to mass 
matrix M: 

(a) interior points 

(c) corner points 

The lattice point associated with the given element is denoted by boldface type. 
Analogous computational molecules exist for regular boundary points on the 
northern, southern, and western walls and for the southwest, northwest, and northeast 
corner points. 

Assume first that vorticity is specified everywhere on the boundary (corresponding 
to inflow everywhere) and that solutions are needed only for the interior points. 
It is then easy to show that this is equivalent to the system of equations: 

(!3! 
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where 

for interior points, 

at (eastern) boundary, 

at (southeast) corner. 

(14) 

iI3 is the specified boundary vorticity, and M.., =.. W4(‘) @ WJy’, where W, 
(= Wr’ = WA’)) is the (N - 2) x (N - 2) tridiagonal matrix 

-4 I 
1 4 1 

1 4 1 

\\\ 
1 4 1 

1 4 

(15) 

The subscript (4) refers to the corner terms in (15). 
Next consider the case where vorticity is not specified anywhere on the boundary, 

as in a basin totally enclosed by solid and/or outflow sides. Here solutions are sought 
for the entire field (interior, boundary, and corner points). It is then easy to show that 
the combined system including contributions of the form (12a)-(12c) is equivalent to 

(16) 

where M, .k Wp’ @ WC’) 2 , and 

2 1 

1 

4 1 

w, = ; 
\\\ 07) 

1 4 1 
1 2 i 

is now N x N. 
These two cases represent extreme situations-either all inflow, or all outflow 

(and/or solid boundaries). We seek a method which will allow a general mix of 
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inflow and outflow sections around the boundary. We can do this by defining a new 
matrix, M,!, , which has the computational structure 

M 71.2 -=- m, for points no! at or adjacent to the 
boundary (i,j Z 1, 2. :V - 1, N), 

1 -= m, - .‘f?lE for interior points adjacent to the 
(eastern) boundary but not near a 
corner (i .--. N - I,.j ;-/- 2, or N - I), 

:: m, - &mE - $ms -k :rnsE for interior corner (southeast) points 
(j :. : lv - 1, j = 3, (18) 

and so on for points adjacent to other boundaries and corners. It can be shown that 
this new formulation decouples the determination of the interior vorticity from that 
of the boundary vorticity and is equivalent to 

M,,*(jk+l) y P,!, ) (19) 

where P,,, has the same relationship to P as M,,, to IV given in (18). In addition, 
M - Wj7.j 8 W$ , where 7!2 -- 

and all of the unknowns are interior points. In short, we use the known dynamic 
relations between boundary and interior points to disconnect the solution of the one 
from the other. 

Furthermore, given the interior values of vorticity from the inversion of M, z : 
each of the four boundaries can be decoupled from its neighbors by using the identical 
strategy. That is, using cornerpoint dynamic relations---with computational structure 
as suggested by (12~) -the cornerpoint values of vorticity can be eliminated from the 
solution of the remaining boundary points. The resulting matrix equation-for 
instance, for the eastern boundary minus its cornerpoints-can be written 

i 

7 
2 

c 

2 
8 2 
2 8 2 
‘\, ‘\ ‘\ \ \ 

\ \ \ 
2 8 2 

2 8 
2 

w 
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where 5a is the (column) matrix of unknown vorticity values along the eastern 
boundary (minus corners) and vector RE contains only known information from 
previous time steps-i.e., the right-hand side of (lob) evaluated at the eastern boundary 
points (including corners)-and terms reflecting the newly updated values of interior 
vorticity. When, as prescribed by the C-F-VN criterion, values of vorticity are to be 
imposed at a particular boundary point, the appropriate row in matrix equation (20) 
and element in Ra-the ith, say-are replaced, respectively, by the ith row of the 
identity matrix and the desired value of vorticity. Each set of boundary values-minus 
cornerpoints-is obtained by an inversion of an analogous tridiagonal matrix 
equation. The cornerpoint values then follow algebraically. 

In the finite-element approximation, the order of calculation is therefore the fol- 
lowing: interior vorticity, vorticity at regular boundary points, vorticity at corner- 
points, and lastly the streamfunction. The reader should note, however, that this 
solution procedure does not strictly guarantee that values of vorticity on, or adjacent 
to, points of inflow be in exact dynamic balance. 

3.3. Pseudospectral Model 

We seek a (discrete) spectral solution to Eq. (3) subject to some appropriate set of 
boundary and initial conditions. For definiteness, consider specifying boundary values 
of streamfunction and vorticity in the manner first suggested by Charney, Fjortoft, 
and von Neumann [ 191. That is, we take as given quantities the values of # everywhere 
along A’, and 5 at those points along Z characterized by mass influx. Boundary values 
of vorticity at outflow points are therefore unconstrained; they are computed as part 
of the calculation. Under these boundary conditions, a completely enclosed domain is 
a special case, one for which-owing to the absence of any inflow at all-vorticity 
need never be specified at any time along Z. In analogy to the analytic problem, we 
make a computational distinction between problems contained within bounded 
regions and those characterized by partially or fully open domains. 

3.3.1. Closed Domain 

In a closed system, the advective terms in Eq. (3) are treated explicitly by a leapfrog 
time-differencing scheme. Under this second-order approximation, the vorticity and 
Poisson equations become, in the usual notation, 

5 k+l = p-1 - 24 t{d(p, 5”) + $&“} 
czz +1(x, y) (21) 

and 
V”/,k-; 1 = (IL-'4. cm 

In space, WC adopt a pseudospectral approximation technique for which the dependent 
variables are expanded in a series of Chebyshev polynomials; that is, let 
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and 

R”(jZ, 9) = f i Rf&T,(4) T&q, 
n-0 m-0 

(23b) 

(23~) 

where 

and T,(g) = cos(n cos-.’ k) is the Chebyshev polynomial (of the first kind) of degree n, 
a function of the linearly stretched coordinates 2 and j. On the collocation grid 
(&I , k?) = (cos(w/n cos(xq/N)), 0 < p, 4 .< N, this implies, for instance, that 

demonstrating the important fact that a Chebyshev transform is equivalent to a 
cosine transform on the (nonuniform) collocation grid (a,, 9,) and as such can be 
implemented very efficiently using special forms of the fast Fourier transform 
algorithm [29]. 

Under these definitions, Eqs. (21) and (22) can be rewritten in terms of the spectral 
coefficients anm , b,, , and Rnm: 

and 

/,“+I = Rkf’ 
nvl nm 9 O<n, m<N, (24) 

[a’” -k a”“]f’,’ = bz”, O<n, m<hr, (25) 

where aFm and a”,“, satisfy 

and 
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Unlike periodic models, the resulting spectral scheme can accomodate quite arbitrary 
boundary conditions on z. In the present bounded geometry, #(x, y) is given on the 
boundary by some set of values, let us say #=. In terms of the spectral coefftcients anm , 
this is equivalent to requiring that 

%nm(“%) = &dXP 7 + 11, O<p,<N, Gw 

and 

a,J,(f,) = &dx, , - 11, O<p<N, CW 
These conditions are imposed on the Poisson equation (22) by using the spectral 
analog of the tau method [30], that is, by neglecting the highest-order dynamic 
equations-those for n = N - 1, N and m = N - 1, N-in (25). The remaining 
equations are then supplemented by boundary conditions (26a)-(26d), written in their 
equivalent Chebyshev series form, to close the problem. The resulting matrix equations 
are not sparse; however, they are quite easily diagonalized. The details of the solution 
have been given by Haidvogel and Zang [31] who show that, for sufficiently smooth 
fields and given accuracy, solutions to Poisson’s equation can be computed at least 
as efficiently by these spectral techniques as by certain second- and fourth-order 
finite-difference methods. 

Once the spectral coefficients arsm ‘+’ have been determined, thus yielding gL(x, y) at 
the next time level, the velocity components u = -If/,, and a := -/-I,& can be computed 
from well-known Chebyshev derivative relations. These in turn are combined to give 
the nonlinear term .I($, LJ == ‘7 . (vi) by the simple pseudospectral procedure 

where the product v[ is determined locally by physical space multiplications on the 
collocation grid (a,, 9,) but the derivatives 2/2x and %/$J are performed spectrally. 
The resulting scheme is of infinite-order accuracy and can be constructed so as to 
conserve any of the higher-order invariants such as energy and enstrophy; however, it 
retains the etTects of high wavenumber aliasing at full strength [32]. The effects of 
aliasing can be identically removed, but at a large cost in computational efficiency 
(approximately a factor of 2). 
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3.3.2. Open Domain 

In the spectral approximation, boundary conditions can only be correctly applied 
if the highest-order terms are treated in some way implicitly. For those problems in 
which the domain of integration is not bounded by an impermeable surface and for 
which, therefore, values of the vorticity arc to be specified at points of inflow, this 
implies that the advective term must be treated somewhat differently than in a closed 
region. To do so, we adopt the following alternating direction implicit (ADI) time- 
differencing scheme. 

EAt 8 p/2 4 -- , 2 ax (q&yw2 = &(1;“-“2) 

_ 5k _ -5 At z, _- -- 2 $ (2’,LY 

- ‘fJ {CO * [(Y - V”) (1 $ a&..~~ 

+ + (EV . [(v - V”) l] .+ #z}r+i12, 

where 

+ -$- {EG * [(v - V”) 51 $ y!JJ~., 

and 

(27a) 

(27b) 

are the known distributions of normal velocity at time step (X: -i- !) along the western, 
eastern, northern, and southern boundaries, respectively. In effect, this semi-implicit 
procedure removes and treats implicitly that portion of the advective term which 
arises from contributions due to nonzero normal velocities at the domain edges. The 
splitting of the advective term relaxes the restrictive Courant condition which arises 
for explicitly difl‘erenced inflow/outflow problems due to the crowding of Chebyshev 
collocation points near the domain boundaries. 

The solution of each half step--q. (27a) or (27b)-proceeds similarly. Consider 
(27a). The implicit advective effects introduce a coupling only in the x direction. In 
fact, along any linej :: 5, =: constant, 24, ‘?‘(a, 5,) is at most linear in 2. Under these 
circumstances, operator L.I(j’r-1/2) can be expressed spectrally as a sequence of 
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tridiagonal matrix equations, one for each 9, (0 < q < N). Similar remarks hold for 
operator L2(<k+1), which is repeatedly solved along lines of constant f = fp 
(0 < p < N). In either case, vorticity boundary conditions are selectively introduced 
in place of higher-order (dynamical) equations in each tridiagonal system. Zero, one, 
or two vorticity conditions are imposed, depending on the corresponding number of 
end points of the line 2 = 3i., or 9 = j, which are inflow points. The resulting 
numerical scheme fixes the value of 5 only at inflow points; however, all values of 
boundary vorticity are in exact dynamic balance with the interior. (This is not true 
of either the FD or FE models-see the preceding sections.) 

Once Eq. (27a) or (27b) yields <“+lp or ctii-l, the associated Poisson problem for the 
streamfunction field #Ii-k1j2 or I+!J~+~ are solved as outlined above for a closed basin. 

4. LINEAR AND NONLINEAR Box MODE TESTS 

In this and the following sections, we briefly describe the formulation and selected 
results of the prototype numerical tests mentioned in Section 1. For a more complete 
summary of the results, the reader is referred to Table I and Figs. 1-16. (See also 
Section 2.) 

4. I. Formulation 

The class of exact solutions to the linear vorticity equation (6 = 0) satisfying 
homogeneous streamfunction boundary conditions on Z are the box modes or 
normal modes of the basin. These can be written 

1+4(x, y, t) = sin(h) sin&y) cos(x + t/2), 0 < x =-= xB , 0 = y = yB , (28) 

where x and t have been scaled with respect to d and @d)-‘, respectively, and d is 
taken to be the scale length of the traveling wave (wavelength/2n). The parameters X 
and II, and the domain size xi, = yB are related to the integer mode numbers, m and n, 
by the relations 

h = m/(m” -k n2)‘j2, 
p = n/(m” + n2)‘12, 

and 
xB z y, ZE T(m2 + n2)1/2. 

Given this nondimensionalization, the linear box modes have a wavelength, period, 
and phase speed given by 27i, 4?~, and 4, respectively. Corresponding to these physical 
measures are the computational measures 

and 

A = xg/n = relative box size, 

v = (N - 1)/d = (N - 1)x/x, = spatial resolution parameter, 

7 = 477/At = temporal resolution parameter. 
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As mentioned previously, we use N to refer to the number of spatial degrees of 
freedom (grid points, spectral functions, etc.) which characterizes the x and y 
discretization of each model. 

For E < 1, we can obtain an approxomate solution to the nonlinear box mode 
problem using a small-amplitude expansion in E. Let 

#(x, y, t) = $0 + l #I -t ““v’lz i- ..‘, 

where &, is the linear box mode solution (28). Then, to first order, 

which has the solution 

q&(x, y, t) = sin(2py) - $ sin2 Ax j- Tl-$+7 
1 

x [cos(r + 2x) - (-s$g--) cos (t -t $ -/- 27.) 

sinh I?(x, - x) -- 
sinh RxB 

COS (f -1. $)]I 

with 

R = (4p2 - +)‘I”, p > !. 

Taking the expansion to second order, the right-hand side of the equation for #2 
has a component proportional to I)” . This secularity destroy: the uniform convergence 
of the approximation for large 2. Following Pedlosky [33], it can be shown that by 
introducing the new time scale 7 = t(1 $ s26), all forcing terms proportional to $+I 
can be suppressed for a suitable choice of 8. The perturbation solution # .:: ibO -t- E$* 
can therefore be corrected by replacing t by 7 in (28) and (30). The resulting expression 
is correct to first order; that is, its leading-order error is U(E~). Since the computed 
solution can be closer to (or further away from) the correct nonlinear solution than 
the approximate analytical solution, the RMS error is an unknown mix of errors in 
both the computed and approximate solutions. 

4.2. Finite-Difference Model Results 

(Table 1, Cuses I-9; Figs. l-6) 

An exact solution, 41,, , to the discrete finite-difference equations (5a) and (5b) 
can be found by assuming 

&(x, y, t) = sin@x) sin(Cly) cos(ctx * at), (31) 

where cy. and G are, in general, functions of the nondimensional space and time 
increments 11 and dt. (We therefore assume that the discrete and analytic results 
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(e) 

(b) 

(d) 

FIG. 4. Nonlinear box mode solution at t = 5 periods with (v, 7, M, n, 6) = (16(2)‘1*, 64, 1, 1, 
0.2). (a, b), (5, $): FD model, CI - (0.3, 0.1); (c, d), (I;, 4): FE model, CI = (0.3, 0.1); (e, f), (5, $): 
PS model, CI = (0.4, 0.1). 
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(a) 

1 b) 

(cl 
0.1 

FIG. 6. As Fig. 4, Cl = 0.1. (a), 5’: FD model, & = [a ; (b), 5’ : FD model, &specified by Krciss 
condition; (c), 5’ : FD model, cz specified by Sundstrom/Davics condition. 
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differ only in the wavelength and phase speed of the traveling component of the box 
mode.) Substituting in the trial solution (31), we find that 

and 

sin(o At) 7 1/2h At 

cos h(Xh) 
cos(dz) = ____-- . 

2 - cos(ph) 

Forh<7randAt<7r, 

and 

u =- l/2 + I!‘48 At2 - l/24(4 - 2$ -- p4) h2 r o(At* - 114). 

That this is indeed the correct computational result has been verified by direct 
numerical integration of the finite-difference equations (5a) and (5b). The resulting 
computational solution differs from (3 1) only due to machine truncation error-that 
is, RMS(5’) y-7 RMS(<, - cn) =. 0(10-‘I). 

In comparison to the analytic solution (for which 3: = 1 and u = $), the wavelength 
and period are correct only to second order in space and time. For sufficiently small 
phase errors 4 (==g8 - od), it is easy to show that 

RMS(+‘) = [2(1 -- cos +r)]‘l”. 

The initial error growth rate 

RMS(+‘) ‘v $t -i-- 0(+f)3 (32) 

is therefore linear in time with a slope given by 

4 = (l/48) At2 - l/24(4 - 2/S - /A*)/? 

N (x2/3) y- 2 - n2;24(4 - 2$ -- p4) V.-Z. (33j 

An example of this behavior is given in Figs. 3a and b for (v, p, m, n) := (16(2)‘/“, 
128, I, 1). 

Note that for the discrete finite-difference solution, the spatial and temporal 
contributions to the phase error 4, being of opposite sign, tend to offset each other. 
Because of this compensation effect, if an optimal choice of At and h is made, the total 
error of the finite-difference scheme can be made quite small although the contributions 
to 4 from spatial and temporal error are individually large. This property explains 
the computed results as functions of v (“71./h) and 77 (=4njAt) in which increasing 7 
(holding v futed), and vice versa, can increase, rather than decrease the error of the 
computed finite-difference solution. Compare, for instance, Table I, cases 2 and 3. 
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For E > 0, the values of 2~’ on the boundary enter the problem through the nonlinear 
terms. Three ways of fixing iI: have been examined in the context of the finite-difference 
model. They are the specification of the analytic value of the vorticity (lz = la), 
and the Kreiss and Sundstrom/Davies conditions-see Section 3. For the nonlinear 
box mode problems studied, the following behavior was noted. 

4.2.1. E = 0.2 

For low to moderate Rossby number the FD model is always well behaved out to 
at least t = 5 periods independent of computational boundary condition. When 
cz = ca is the required condition, however, there is a buildup of small-scale pertur- 
bation vorticity on the western wall-Fig. 6a. (Since similar effects are noted in all 
the models, this buildup is presumably a manifestation of the physical response of 
the system to the presence of small-scale numerical truncation error.) This accumu- 
lation of c is less rapid when the Kreiss boundary condition is applied everywhere 
(Fig. 6b) and is nearly eliminated when the Sundstrom/Davies condition is invoked 
(Fig. 6~). The RMS error measures are, however, comparably large-several tens 
of percentage after five periods-for all three boundary conditions (Table 1, case 6). 

4.2.2. E = 0.4 

For higher Rossby number, the error accumulation to the west is much more rapid 
and becomes noticeable in even the Sundstrom/Davies experiments. In contrast to 
the finite-element and spectral models, however, the finite-difference scheme does not 
suffer catastrophic numerical instability when grid-scale vorticity begins to accu- 
mulate. This lower sensitivity to the presence of small-scale vorticity is perhaps due 
to a small amount of (numerical) dissipation implicit in the finite-difference formalism. 
In general, the RMS error quantities have a linearly increasing trend similar to, but 
somewhat greater than, that noted for E = 0. Some of this increased error is attri- 
butable to the approximate nature of our reference solution. 

4.3. Finite-Element Model Results 

(Table I, Cases l-9; Figs. l-5) 

The following functional dependence on the parameters v and 7 has been noted 
in the error analysis of the finite-element model results. 

4.3.1. E = 0, r) < 4(2)‘/2 v 

For relatively coarse temporal resolution, the RMS error quantities are well 
described, as in the finite-difference and spectral models, by the relation + N (7?/3) 7-2 
and consequently by an initial linear increase with time proportional to T-~. This 
reflects the fact that for sufficiently large v the error is attributable to temporal 
truncation effects (identical in all three models). 
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4.3.2. F = 0, rl N 4(2)‘1‘2 v  

As 7, increases, RMS([‘) for the finite-element is characterized by a large initial value 
followed by a very slow linear increase thereafter (Fig. 3~). (RMS($‘)-whose values 
are perhaps dictated by a diRerent mechanism than those of RMS(<‘)-maintains 
a iinear trend.) Apparently, the spatial contribution to the phase error 4 is of a form 
quite different than that implied by (33). For one thing, we know the phase error 
io be proportional to in,’ for the linrari/.ed advectvie equation [25]. In paramercr 
ranges whcrc this diminished error growth rate prevails, the finite-element model 
may offer some advantages for long-term calculations: however, WC have not vcrificd 
this possibility. 

For E =:: 0, the maximum pointwise errors in vorticity tend to be near the western 
boundary, but there is very little preferential accumulation of small-scale vorticity 
there. With nonlinearity (C >. 0), the situation is qualitatively different in the following 
way(s). 

43.3. E -7: 0.2 

With E - 0.2 an initial eastern boundary iayer is generally observed in the field of <‘. 
This boundary layer eventually disappears, to be replaced by an accumulation OC 
perturbation vorticity on the western wall, as in the FI) and PS simulations (Fig. 5). 
in other respects. the solutions bear some resemblance to those for t :: 0. RMS(c’) 
again shows evidence -for certain values of v and ‘7 of leveling o!Y with time after 
an initially large increase, and #’ sometimes resmebles a box mode (out of phase with 
the reference solution). 

4.3.4. F --_ 0.4 

With stronger nonlinearity, perturbation vorticity on the grid-point scale collects 
first on the wcstcrn wall and then in the center of the domain (perhaps as a numericai 
response to insufficient resolution of the narrow wall layers of i’). Once this stage is 
reached, the solution becomes numerically unstable, typically after about five periods 
(Table I, case 7). 

This catastrophic effect of small-scale vorticity accumulation ix reached in less than 
a period for E - 0.8. 

4.4. Pseudospectral Model Results 

(Table I, cases 1-9; Figs. l-5) 

For linear box modes, for which we have the analytic solution, the spectral model 
shows three distinct types of behavior corresponding to different regimes in the space 
of the nondimensional computational parameters. 

4.4.1. E =:= 0, 7 < 16(2)‘/” v 

Quite a large range of v exists for which spatiai truncation errors are totally 
insignificant in comparison to those arising from time-diffcrcncing. For this range of 

.#I /3i!r-3 
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parameters, the RMS quantities grow linearly in time (Figs. 3e and f) and can be 
quantitatively explained by the simple phase error analysis of Section 4.2 if, in 
addition, the assumption is made that h N 0. There is no apparent buildup of 
perturbation vorticity at scales other than those of the box modes themselves. Since 
the computational errors are due to time-differencing alone, they are proportional to 
+-see Table I, cases 1 and 2. 

4.4.2. E = 0, -q N 16(2)1/2 v 

For v si 4 and standard values of 7 (=64 or 128), spatial error becomes noticeable. 
The growth of the RMS quantities is no longer strictly linear. In fact, the temporal 
variation of RMS(g) begins to assume characteristics noted (over a larger range of v 
and q) in the finite-element model: a large initial error growth, followed by a relatively 
slow increase with time. Indeed, it is interesting to note that the spectral model can 
show the effects of compensating space- and time-differencing errors, which is a 
general property of the finite-difference model. Something of this kind is clearly 
happening in the spectral model when, for instance, RMS($) decreases when the 
box mode numbers m = n are increased from 2 to 3 at constant v and q (Table I, 
cases 4 and 5). For these values of v, perturbation vorticity does appear to collect on 
the western wall, perhaps in scales much smaller than those of the original box modes. 

4.4.3. E = 0, 7 > 16(2)lj2 v 

As expected, for extremely small values of the resolution parameter v, substantial 
spatial error results. The RMS error quantities once again grow in a quasi-linear 
fashion. The perturbation vorticity field is now dominated by a narrow layer on the 
western wall. The amplitude of this feature is sufficiently large (after 10 periods) 
to contribute recognizably to the total vorticity held. 

For the nonlinear box modes, behavior of the computational system depends 
sensitively on E in the following manner. 

4.4.4. E = 0.2 

For E 5 0.2, the spectral model is well behaved out to t ~15 periods. 
however, integrated I 05 I2 has begun to increase rapidly. Significantly longer inte- 
grations could therefore be expected to suffer eventual computational instability. 
Even at this level of nonlinearity, increasing v and or r) (over the range tested: 
v = S(2)l12, 17 = 128) does nothing to improve the error measures (Table I, cases 6, 
8, 9). The manifestation of error growth is a very definite pereferential accumulation 
of perturbation vorticity in narrow layers adjacent to the western wall of the domain 
(Fig. 5e). This accumulation of perturbation vorticity may ultimately result from 
local numerical truncation errors which are propagated to the west where, in the 
absence of dissipation, they collect in a narrow boundary layer. 

4.4.5. E = 0.4 

The results for E = 0.4 are much more catastrophic, with perturbation vorticity 
collecting so quickly on the western wall that locally intense gradients of vorticity 
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grow to destroy the calculation after only 2.5 periods (Table I: cast 7). This behavior 
is once again independent of v and 7. When the calculations go bad, they do so very 
quickly: presumably the computed fields arc still quite accurate up to the instant 0-r 
catastrophic failure. (This essentially instantaneous instability is a feature of the 
FE model also.) In a related calculation? it has been shown that the useful integration 
of the spectral model can be prolonged to t = 5 periods (and beyond) by periodicail>/ 
filtering the vorticity held by setting 

bE,(filtered) -7 Jnfn,bfm 

(see Section 3.3), where the spectral Iilter 

fn = 1.0 - exp{-Z(N” - PI”)] 

and X is adjusted so that 5” is smoothed only at the highest wavenumbers. By 
comparing the filtered and unfiltered results, it is known that such fiitering does not 
affect the large-scale features of the circulation and that the two streamfunction fields 
(up to the moment of instability in the unfiltered calculation) are virtually identical 
(an example is given in Fig. 13, Section 6). 

Lastiy. it is important to note that the RMS error quantities for the nonlinear box 
mode problems are nearly independent of v and 7. If there is nothing idiosyncratic 
about these problems, then we must conclude that the largest contribution to the RMS 
error fields comes from the uncertainty in the exact analytic solution to the nonlinear 
box mode problem. 

4.5. htercomparison 

Results from the linear box mode tests (see Table I) demonstrate that ?he finite- 
element (with h’ :- 33) and pseudospectral (with &’ ..- 17) models are comparahiy 
accurate over the range of v and 71 studied. (The spectral model is, however, somewhat 
more cfiicient-----Table II.) And, even though the finite-difference is by far the least 
accurate model, a phase error analysis of the FD model results shows that errors 
can bc minirniLed for optimal choices of v and 71. Since these optimal parameters are 
functions of the time and space scales of the problem, however, this property will bc 
of q,uestionabIe value in more general problems charactcrizcd by multiple time and 
space scales. Even if a degree of compensation could be guaranteed in a spcciIic 
problem, errors get smaller only if v and ~7 are increased in the same ratio. A fourfold 
decrease in the RMS errors would therefore require FQ and v to be simultaneousiy 
increased by a factor of 2, with a resulting increase in computational work of a factor 
of 8. In contrast, the spectral model, and to a lesser extent the FE model, generally 
require only 7 to be increased-say by 2, for a fourfold reduction in error-.- because 
of their much greater spatial accuracy. 

In the case of the nonlinear box modes, interpretation of the results is compifcated 
by the fact that we have only a perturbation solution with which to comparc the 
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TABLE 11 

Approximate Model Running Times as Functions of iV (CPU Time in Seconds on the NCAR CDC 
7600 per 100 Time Steps) 

Linear Rossby waves Nonlinear Rossby waves 
___-- -_.--~. 

N FD FE PS FD FE PS 

17 I.5 3.1 3.7 2.0 3.4 12.1 
33 6.3 13.1 10.6 8.3 14.0 31.1 

33 17 4.2 4.2 2.9 4.2 4.1 2.6 

a The ratios of the running times (also listed) indicate that the computational time increases as 
approximately Ne for the FD and FE mod& and as N In N for the PS model. Running times for the 
other linear and nonlinear model problems are comparable to those quoted here for the Rossby 
wave calculations. 

computational results. Consequently, our error measures-such as RMS(#‘), etc.- 
reflect three sources of error: spatial and temporal truncation errors, and the error 
associated with not knowing the exact analytic solution. The RMS quantities listed 
in Table I for the nonlinear box mode tests cannot be used as direct measures of model 
performance. 

The essential qualitutive distinction that can bc made between the results of the 
three models for E > 0 is that the finite-difference model, though presumably less 
accurate, appears not to be susceptible to catastrophic numerical instability when 
small-scale error fields are present. Under these conditions, the FD spatial truncation 
error is, however, formally quite large. A nonlinear FD solution will therefore become 
invalid after only a short period of time even though a stable calculation can be 
maintained for a much longer time. 

5. FORCED NONLINEAR Box MODE TESTS 

5.1. Formulation 

One means of avoiding the complications associated with having only a pertur- 
bation solution to the nonlinear box mode problem is to consider the analogous 
forced problem, that is, to seek solutions to the inhomogeneous equation 

(34) 

where F is some suitably chosen forcing function. As before, $ is required to vanish 
on Z. In particular, we wish to examine solutions with spatial and temporal character- 
istics similar to those of the linear box modes. Accordingly, set 

z/,(x, y, t) = sin x sin y cos(ax + ~JJ + ct), 0 G x, Y < =, 
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where cl, b, and c are arbitrary constants which determine the wavelength, period, and 
phase speed of the forced mode (2~r,‘(a~ + 62)li2, 2r/c, and c,‘(a” + b2)* ‘2, respectively). 
This will be a solution to (34) so long as 

which will in general be nonvanishing, as will J({J~ , Vy’r,). Ciivcn specilic values o! 
parameters U, b, c, and E. the functional form of Fcan therefore be directly calculated. 
i-‘or the fo!lowing tests. the Rossby number has been fixed at E = 0.2. An examination 
of higher 6 behavior is reserved for the open boundary calculations of Section 6. 

5.2. Finite-Dfj@-ence Model Results 

(Table 1. Cases 10-I 2; Figs. 7- -9) 

Table 1 shows the RMS error measures for the finite-difference model after two 
periods for a variety of values of v and 7. The results indicate that the FD error norms 
arc in general somewhat smaller than those for the linear box mode problems with 
comparalbe nondimensional parameters. Compare Figs. 3a and b and 9a and b: ;‘or 
instance. In addition, a partial compensation between spatial and temporal errors 
once again exists so that the RMS errors (as in the linear box mode cases) riced not 
decrease with increasing 7 and v (Table I, cases 11 and 12). As in the nonlinear box 
mode problems, perturbation vorticity tends to collect on the western boundarv 
(Fig. ga). This appears to eb a quite general property of all the simulations wheh 
E :, 0. regardless of the orientation of the forced mode. 

5.3. Finite-Element Modeel Rrsuits 

(Table I. Casw IO-1 2; Figs. 7-9) 

The FE model behaves similarly, yielding very accurate and stable solutions for a 
range of parameters (Table I, cases 10-12). For instance: with (v, r;, LZ, b) 
(32, 128, I :2* /“, l/2* :*) the RMS errors are 0(1--2 9;) after two periods. As in the FD, 
and as WC shall see, the spectral computations, the RMS errors given by the FF 
solution to the nonlinear forced box mode problem are typically no less, and very 
often several times smaller, than the errors noted for the linear unforced box mode 
tests with comparable resolution. Figures 3c and d and 9c and d give an example of 
this behavior. (Note also that the character of the RMS error curves seems to be 
modified by the forcing such that RMS(S’) is now a quasi-linear function of time over 
the range of parameters examined here.) The perturbation fields associated with rhe 
forced problems, although small in amplitude, are still characterized by small-scale, 
westward-trapped <’ and large-scale 4/1’ patterns (Fig. 8). 
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FIG. 7. Forced nonlinear box modes with (v, 7, a, b, c) = (32, 128, 1/21j2, 1/21j2, 0.2). (a, b), 
(1, #): FD model, t = 2 periods, CI = (0.4, 0.1); (c, d), (5, #): FE model, t = 5 periods, CI = 
(0.7, 0.1); (e. f), (1, #): PS model, t = 5 periods, CI = (0.4, 0.1). 
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(0) 

0.06 
(@I (f) 

2.0 x lo- 

FIG. 8. As Fig. 7. (a, b), (I;‘, $‘): FD model, t = 2 periods, CI = (0.04, 1.0 X IO-‘); (c, d), 
(q, 4’): FE model, i = 5 periods, CI = (0.1, 4.0 x 103; (e, f), (c, #‘): PS model, t = 5 periods, 
CI .= (0.06, 2.0 x 10-y. 
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5.4. Pseudospectral Model Results 

(Table I, Cases 10-12; Figs. 7-9) 

These calculations were all performed with very high spatial resolution (V 3 16); 
consequently, insignificant spatial truncation error is expected. With a diagonally 
propagating mode (a = b = 1/21/2) and r) = 128, the RMS errors are in fact very 
small, being no more than 0.5 % after five periods of integration. Reference to Table I 
and Figs. 9e and f demonstrates, however, that not only are the RMS errors no longer 
strictly proportional to q-2-as they were in the unforced case with sufficient spatial 
resolution-but the error trends are not linear in time. Although RMS(c) increases 
monotonically, RMS($‘) seems to vary quasi-periodically with little superimposed 
trend (Figs. 9e and f). 

As in the FD and FE simulations, the PS results for the forced nonlinear box mode 
problems show a similar tendency for small-scale 5’ to accumulate at the western edge 
of the domain (Fig. 8e). The rate of this error accumulation might plausibly be thought 
to increase dramatically with E, as in the nonlinear box mode problems; however, this 
hypothesis was not tested. 

None of these conclusions depend sensitively on the direction of propagation of the 
forced model. 

5.5. Intercomparison 

All three models are capable of delivering an accurate and stable solution to the 
forced nonlinear box mode problem for the computational parameters considered here. 
In all cases, the observed RMS errors are less than or equal to those noted in the 
linear box mode cases (for comparable u and 7). It is quite likely that this reduction 
in numerical error, despite going to a problem with nontrivial nonlinearities, is in 
some sense associated with a “locking in” of the numerical solution to the applied 
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forcing. The quasi-oscillatory nature of the resultant RMS($‘) error curves-see 
especially Fig. 9f-argues for such a process. 

6. LIK:EAR AND NOKLINEAR ROSSBY WAVI. TESTS 

6. I . Formulorion 

The advected Rossby wave 

where 

4/,(X, y, ?) : -yy - Sin(kX ly - oJf), 

and 

w = k(l --- ty) 

k2 .- 1” :--. 1. 

(;I\ I- , 

(-38) 

is a solution to both the linear and nonlinear vorticity equations (3). As i‘or the 
box modes, we have scaled with respect to d = (2i~)m.l times the wavelength of the 
traveling wave; ug, a characteristic particle velocity; and the time scale ($7) I. Ir. the 
resulting nondimensional system, the wavelength is 277. and the basin size .x-B -- -A. 
where d is the number of half wavelengths per box width (a measure of the structure 
of the solution). Theoretically it is known that Kossby waves are individually unstable 
to small perturbations [34] with an c>-folding time proportional to (E) I. This growth 
time scale is comparable in all casts to the entire duration of the experiment. IIue :o 
the absence of large-amplitude perturbations (or “noise”) that can efiicicntly extract 
energy from the primary wave, it is cunlikely that purely physiia instabilities---as 
opposed to computational ones -play a role in the following results. The reader 
shou!d note that the nonlinearity of these model problems is trivial (that is, seif- 
canceling) when 7 = 0. 

6.2. Finite-Diflerence Model Results 

(Table I, Cuses 13-28; Figs. 10-12, i4-16) 

The results for one linear Rossby wave experiment in which (v: 71, 6) -. 
(32/3.5, 128,O) are listed in Table 1, case 13. Variations in the RMS error measures as 
functions of v and 7 did not differ from the comparable dependencies noted for the 
linear box v leveling oft‘ at i : 5 

periods. 
With no mean flow and moderate nonlinearity, (E, k, 1, y) = (0.4, 3/131j2, 

2/13 1.‘2, 0), the RMS errors of the FD simulations are characterized by very small 
temporal, relative to spatial, errors. At the pivotal resolution (v, 71) 1 132/3.5. 64). 
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(b) 

(el if) 

FIG. 10. Nonlinear Rossby waves at t = 5 periods with (v. 7, k, 1, E, y) = (32/3.5, 64, 3/131j2, 
2/131/2, 0.4, 0.0). (a, b), (5, 4): FD model, CI = (0.2, 0.2); (c, d), (5, 4): FE model, CT = (0.2, 0.2); 
(e, f), (1, 4): PS model, CI = (0.2, 0.2), filtered. 
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ie) 
ODO8 

FIG. II. 
CI 

As Fig. 10. (a, b), (<‘, f): FD model, C1 = (0.04, 0.04); (c, cl), (c, I/J’): FE modes, 
~- (0.05, 0.02); (e, f), (c’, JJ’): PS model, CI = (8.0 x 1O-3, 6.0 x IO--“), filtered. 
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AS Fig. 30, 0 Q f  Q 5 periods. (a, b), RMS(c, #‘): FD model; FE model; PS model, 

RMS($‘) ci RMS(c) ‘v NDIF(NRG) = 0(14 %) after five periods. The manifes- 
tation of error in these simulations are perturbation fields closely resembling box 
modes which begin to destroy the plane wave nature of the solution after a few periods 
(Figs. lOa,b and 1 la,b). This form for the error fields appears to be independent of 
v and q. Their amplitude, as stated previously, depends sensitively on v but not on r) 
for those values considered here. (In addition, other simulations-cases 16, 20, and 
22-show that RMS(#‘) and RMS([‘) also depend on the orientation of the reference 
wave so that cancellation of time and space errors can sometimes occur.) The RMS 
error measures typically grow quasi-lineary-e.g., see Figs. 12a,b-though in some 
cases there is a tendency for the rate of error growth to slow toward the end of the 
simulation. Lastly, the change in the integrated kinetic energy of the system is 
U(- 10 %), somewhat larger than that observed in the nonlinear box mode problems 
for comparable v and T. 

For E = 0.8 and (v, 7, k, Z, r) = (32/3.5, 128, 3/131/2, 2/131j2, 0), the same quali- 
tative remarks apply. The field of 5’ does, however, begin to show some noticeable 
grid-scale variability in comparison to its rather smooth modelike appearance for 
cz = 0.4. The associated values of RMS(#) and RMS(r) are comparable to those for 
d = 0.4. 

With the addition of a mean flow (y # 0), the FD model actually becomes more 
accurate, perhaps reflecting the increased smoothness of the $ field (Fig. 14b). With 
y = 0.5, the FD model delivers a stable solution with an accuracy of O(20 %) in 
vorticity, but only 0(3-4 %) in both streamfunction and energy (Table I, case 17). 
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For a mean flow of the opposite sense (y =- -0.5), the errors are comparable or 
slightly larger. As with 7 = 0, the integrated errors grow linearly in time, and the 
fields of $I’ and [’ are dominated by large-scale box modelike features. Similar remarks 
hold for Rossby waves of different orientation. 

6.3. Finite-Element Model Remits 

(Tub/e I, Cases !3-28; Figs. 10-12, 14--16) 

The results of the FE linear Rossby wave calculations are as expected from Sections 
4.3 and 6.3. With (I), T’], /c, I, 7) -= (3213.5, 128. 3/131j2, 2:‘13’:?, 0), RMS($‘) -; 
RYlS(<‘) 2 O(! 04) at the end of five periods of integration (Table I, case 13). In fact: 
RYIS(<‘) has nearly stopped increasing altogether, though RMS($‘) continues to rise 
quasi-linearly. Associated with these error levels are fields of $’ and c’ composed of 
basin-scale and grid-scale features: respectively. 

With E : ., 0, the FE model accumulates box modelike features in the streamfunction 
nerd. Lrrors in the vorticity are resident at somewhat smaller scales. Consider, for 
instance , Figs. lOc,d and 1 lc,d, which show the total and perturbation fields, respec- 
tively. at the end of a five-period integration with (v, 7, E, k, I, y) = (32j3.5: 64. 0.4, 
3/i3r ‘1 3 I 3rin 0). For this case, the FE model has errors of O(9 y<), a signilicant .I’- , 
improvement over the second-order FD results which, as remarked: have a large 
component of spatial truncation error. On the contrary, the FE errors are most 
sensitive to changes in ~7, at least in the parametric neighborhood of our pivotal 
calculation (Table 1, cases 14-16). 

Quantitatively similar statements can be made for simulations a? higher Rossby 
number case 19: E = 0.8-and in the presence of mean advcction-cases 17 and 18, 
~1 = 00.5. (Sate that the latter differ from the nonadvected Rossbg waves in that 
they have nontrivial nonlinearities.) As with the FD model, neither the increase in E 
nor the inclusion of mean advection seriously increases the RMS errors of the FE 
model. As a result, for constant v and ~7 (spatial and temporal resolution), RMS(tJ’) -- 
O(1.L4?;,) and RMS(<? = O&10%) after five periods (Table I, cases 16--19). The 
error growth is quite consistently nearly linear (Figs. 16c,d) with the perturbation 
streamfunction appearing at the largest (basin) scales although in a somewhat less 
organized pattern than the box modelike features noted with (E, 7) --: (0.4. 0) -.- 
Figs. 1 Id and 15d. 

6.4. Pseudospectral Model Results 

(Table I, Cases 13-28; Figs. 10-16) 

For 0.4 :< E :< 0.8, the spectral model suffers eventual numerical instabi!ity at 
some t 5 periods. Figure 13a shows a typical example where (v, ~7, E, ;/) == 
(16i3.5, 128, 0.4, 0). By t = 1.5 periods, the total vorticity is dominated by small-scale 
noise; catastrophic failure of the numerical experiment occurs shortly thereafter. 
The most intense grid-scale vorticity features occur at one or more points on the 
boundary, but the noise is also substantial in the interior along a !ine normal to that 



44 HAIDVWEL, ROBINSON, AND SCHULMAN 

(a) 
0.6 

(b) 

(d) 

0.2 
(f) (e) 

FIG. 13. As Fig. 10. (a, b), (t;, J,): PS model, t .y 2.5 periods, Cl = (0.6, 0.2); (c, d), (i, !/I): 
PS model, t = 2.5 periods, filtered, CI - (0.2, 0.2); (e, f), (I, #): PS model, t = 5.0 periods, filtered, 
CI = (0.2, 0.2). 
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ie) 
0.7 

(f) 

FIG. 14. Nonlinear Rossby waves with (v, 7, k, I, E, y) = (323.5, 64, 3ii3112, 2/131/2, 0.4, 0.5). 
(a, b), (5, 4): FD model, t = 5 periods, CI = (0.2, 0.7); (c, d), (5, $): FE model, I = 5 periods, 
61 = (0.2, 0.7); (e, f), (5, $J): PS model, t = 5 periods, CI = (0.2, 0.7), filtered. 
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FIG. 15. As Fig. 14. (a, b), (5’, $‘): FD model, t = 5 periods, CI = (0.07, 0.03); (c, d), (&“, $‘): 
FE model, t = 5 periods, CI = (0.04, 0.01); (e, f), (1’, 4’): PS model, t = 5 periods, CI = (0.01, 
5.0 x 1O-3), filtered. 
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point. This is undoubtedly due to the nature of the spectral expansion which ties 
points together in just such a manner. The ultimate origin of the PS instability is not 
!<nown. The site of the instability, for instance, is random and not simply related to 
the imposed patterns of mflow/outAow along the domain margins. 

it has been discovered empirically, however, that periodic spectral filtering elfective!y 
controls the generation and accumulation of grid-scale vorticity, and prevents numer- 
ical instability in these nonlinear Rossby wave experiments. Figure 13 shows the 
effect on one such pivotal calculation. Hy t = 1.5 periods, i: is entirley dominated 
by two regions of high-wavenumber noise in the unfiltered calculation. When the 
simulation is redone with filtering, however, the Kossby wave is easily advanced in 
time to r = 5 periods. The final field is quite free of grid-scale noise (Figs. IOe,f 
and 14e,f). 

Filtering of this kind stabilizes a wide range of nonlinear Rossby wave calcula~ims 

(Table 1, cases 13 28). The resulting RMS errors arc notably small, being no more 
than a few percent for the experiments recorded in ‘i‘abie I. The errors associated 
with the filtered PS model are typically many times smaller than those of the compa- 
rable FD test and somewhat smaller than those given by the FE model. RMS(+‘) 
and RMS(c’) grow linearly in time [perhaps with some initially large value of the 
errors due to the filtering] (Figs. 12 and 16). There is very little accumulation of 
unresolvable features in the vorticity tield (Figs. lOc,f and I4c,f). The removai of 
these small-scale features by filtering does not, however, seem to have a strong et&t 
on the energy of the system. 

(a) ib) 

FIG. 16. As Fig. 14, 0 -=: t < 5 periods. (a, b), RMS(<‘, i’}: FD model; FE modei; I’S model, 

filtered. 
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6.5. Intercomparison 

The parametric results of the linear Rossby wave calculations confirm the conclu- 
sions of Section 4.5 in which it was noted that the FE and PS models were in general 
more accurate than the FD code, except for certain optimal choices of the compu- 
tational parameters v and 7. In addition, the orientation of the Rossby wave has a 
strong influence on the RMS errors of the FD model. All three models are stable for 
E = 0. 

When nonlinearity is admitted, however, the finite-difference and finite-element 
models are alone capable of delivering stable and accurate calculations of moderate 
duration (t < 5 periods) over a broad range of parameters. The spectral model is 
typically unstable in these instances unless it is supplemented by periodic spectral 
filtering of the vorticity field. 

As a preliminary test of the response of the finite-difference and finite-element 
models to the addition of a scale-selective vorticity filtering mechanism, we have 
redone FD and FE experiments 16, 17, and 19 and FE experiment 7 with the appli- 
cation at each time step of a 16th-order Shapiro filter [35]. The results of these com- 
parisons indicate that the RMS errors of the FE calculations are generally lowered 
somewhat by the addition of filtering (particularly RMS({‘), whose smaller scale 
components are being eliminated by the filtering) and its instabilities delayed (but 
not removed). The opposite, namely an increase of error with the application of 
filtering, is often true of the FD simulations. It is not obvious why this should be the 
case unless the computational boundary condition used in the FD formulation 
interacts in some systematic way with the applied filtering. 

It is of interest to note, however, that all three models (perhaps with some distri- 
bution of wavenumber selective filtering) can bc made to yield accurate solutions to 
these open domain problems. in fact, the models have error accumulation character 
istics not greatly difrerent than those noted in closed-basin problems. Specifically, 
the FE and PS models are many times more accurate for given v and v than the FD 
model, with the PS being overall the best. Even taking into account the increased 
efficiency of the finite-difference scheme (Table 1 I), the dilrcernce between the second- 
order and higher-order methods is significant. It is estimated that the FF (,V = 33) 
and PS (N = 17) models are, on the average: 4 and 15 times more accurate, respec- 
tively, than a FD model with N ‘v 43 for which the running times of all three models 
would be approximately equal. 

7. SUMMARY AND CONCLUSION 

We have integrated the inviscid barotropic vorticity equation under a variety of 
assumed initial and boundary conditions corresponding to linear and nonlinear box 
modes, forced nonlinear box modes, and linear and nonlinear Rossby waves. The 
former two classes of problems are defined within closed domains; the latter is totally 
open with respect to a presupposed external environment and therefore rcprescnts 
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prototype limited-area calculations for the ocean. Each problem has been solved 
using second-order finite-difference, fourth-order finite-element, and infinite-order 
spectral approximation techniques. For each of the three models a series of calcu- 
lations was performed to determine its accuracy, stability, and elliciency as functions 
of problem type and the associated physical and computational nondimcnsionai 
parameters. The most important of these parameters are E, the Rossby number. 
and v and 7, nondimensional measures of the spatial and tcmporai resolutino of the 
numerical approximation. The accuracy of model results was determined. wherever 
possible, by comparing to known analytic or reference solutions. RMS measures of 
the errors in the computed values of vorticity, RMS(<‘), and strcamfunction. 
RMS($‘), and a measure of the gain or loss of globally integrated kinetic cncrgy. 
NDlF(NRG). were tabulated. Integrations of moderate length (5. 10 periods of the 
reference solution) were performed as an empirical measure of the functional depen- 
dencc oi‘ modci stability on the parameters. As a result of these calculations. \W are 
able to make model model intercomparative statements for a sequence of linear ano 
nonlinear problems in open, as well as closed, domains. ‘To our knowledge, suet: 

intercomparisons have not previously been made. A more lengthy summary of the 
parameters and error norms can be found in Section 2. A complete discussion 01 
results has been given in Sections 4-6 and Table I. 

Thcsc tests have shown that all three models arc capable of delivering ctficient 
iong-term solutions of acceptable accuracy to linear and weakly nonlinear problems 
in both closed and open domains. The results also suggest that given a judicious 
seicction of frictional (filtering) mechanism andior computationai boundary con- 
tiitlon. each of the models can be made comparably accurate for highly nonlinear 
calculations. (This hypothesis is bein g tested in a related series of expcrimcnts.) Wc 
conclude, therefore, that any of the physicaljnumerical mod& investigated here .-. 
modified perhaps by additional dissipative or boundary condition assumptiorr-- 
could be used for the limited-area modeling applications mentioned in the 
Introduction. 

Under the assumption of inviscid dynamics, the operational pcrformancc of the 
three mod& is most sensitively related to the Rossby number, E. For 0 :* 6 < 0.2. 
a!! the mod& arc stable in the long term. Furthermore, unless an optional choice of 
i’ and 7. the nondimensional space and time steps, is made. the spectral and fini:e- 
element mode!s are the most accurate, and the finite-ditlercnce the least. That this 
ranking reiiects the formal spatial accuracies of the models has been demonstrated 
by a simple phase error analysis for the linear box mode probicms Section 4.2. 
The net resu!t of this increased accuracy is that, for a given admissable error, both :hc 
F!-! and PS models arc many times more efficient than the FD model (Section 6.9. 
These conclusions are valid independent of problem class. 

Although the PS (and to a lesser degree the FE) models are susceptible to cicntual 
numerical instability characterized by the catastrophic accumulation of grid-scale 
vorticity features. it has been found that stability can often be maintained: and errors 
reduced, by a periodic filtering (smoothing) procedure. The RMS error norm5 of the 
FE (but not always the FD) model are also reduced with the application of a ccale- 
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selective (Shapiro-type) vorticity filter. Related calculations not reported here have 
validated the use of these higher-order altering mechanisms over a wide range of 
problems. The important point here is that even relatively ad hoc removal of small- 
scale vorticity prolongs the useful length of integration and increases the accuracy 
of highly nonlinear simulations. 

Lastly, we reiterate the fact that these test calculations do not provide-and were 
not intended to provide-a definitive comparison of finite-difference, finite-element, 
and spectral approximation techniques per se. (A fourth-order finite-difference model, 
for instance, would have fared much better against the finite-element code.) What 
they do tell us, and what was not known beforehand, is that all three numerical 
procedures can be made to yield stable and accurate solutions to these idealized 
open ocean problems. More importantly, the FD, FE, and PS techniques appear 
to retain their relative formal accuracies in spite of the much more formidable physical 
and numerical problem that these limited-area calculations represent. 

APPENDIX I 

Implementation of the SundstromlDavies Boundary Condition 

Consider a region near the boundary with the following local ordering. 

I 

7 6 5 

a 0 4 

1 2 3 

The vorticity equation applied at point 0 will involve vorticity values on the other 
eight numbered points. 

where Q = cAt/h2 and J, is the Arakawa Jacobian term for the rth point evaluated 
at point 0. 

The Sundstrom/Davies closure for boundary point 2 is 

5,"" + r;,"-' = 1;2" + 5,". (A21 

5 g+’ can be eliminated from (Al) and (A2) and the result can be written: 

QJxL” + (1 + QJ,> t-2 + QJ&= = R2, (A3) 
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where 

Bn this numerical procedure, the interior vorticity and streamf~ncti~n are com- 
uted before the boundary vorticity. Equation (A3) is arranged so that R, contai 

only known quantities. For each point along a boundary (but not at corners), (A3) 
applies. 

Were it not for corner points, the system of Eq. (A3) would be of tridiago~a~ form 
and easily invertible. Consider a region near the (southeast) corner. 

For the boundary condition at the corner, we take the spatial average along t 
diagonal 

p + s;-” = L-3” + 5,“. (-45) 

Tt would seem that near corners a pentadiagonal system is required since the Jacobian 
evaluated at 0 involves the five unknown boundary values at points I through 5. 
However, the Sundstrom/Davies conditions at points 2 and 4 are 

This means that boundary points which are corner neighbors can be expressed in terms 
of the corner vorticity and known values. Equations (AS) and (A9) are applied sn 
conjunction with the equations requiring vorticity values of the corner neighbor, i.e., 
the corner and the two boundary points 2h from the corner. 
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The unknowns in the tridiagonal system are given a cyclic ordering excluding the 
corner neighbor points. 

3K+1 

3K+2 

3K+3 

4K 

t I ‘i I 
2Kt1 

2K 

K+3 

7 K+L 

K = M-3 

1 2 3 K-l K K+l 

In the diagram the ordering is started in the southwest corner, and (A3) is a 
tridiagonal system with cyclic boundary conditions since points 1 and 4K arc con- 
nected. By a reordering of the points, the tridiagonal cyclic system can be transformed 
into a pentadiagonal system which requires twice the computation time of a tridiagonal 
system. 

At inflow points, the vorticity is known and (A3) is replaced by 

L-2 Ok = 5” BY (AlO) 

where iIBk is the specified value. If the origin of the ordering (the southwest corner in 
the diagram) were inflow, the off-tridiagonal terms expressing the cyclic nature 
vanish and we are left with a simple tridiagonal system. If the southwest corner is not 
inflow, renumber the boundary point 

i’ = (i -1. L - I) mod(4K) --f 1, 

where L is an inflow point. Finally, the values at the eight corner neighbor points are 
obtained from (A8) and (A9), or specified if inflow. 
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