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The inviscid barotropic vorticity equation is integrated under a varicty of assumed initial
and boundary conditions corresponding to linear and nonlinear box modes, forced non-
linear box modes, and linear and nonlinear Rossby waves (with and without mean advection).
The former two classcs of problems arc defined within a closed domain. The Jatter is
partially or totally open to a specified external environment and therefore rcpresents
prototype limited-area calculations for the ocean. To determine the extent to which the
accuracy and cfficiency of limited-area calculations depend on the numerical integration
scheme, each test problem is solved independently using the finite-difference (FD), finite-
element (FE), and pseudospectral (PS) techniques. The thrce numerical models differ
primarily in the formal accuracy of their spatial approximations and their treatment of
vorticity at outflow points along the boundury. The FD model employs a centered second-
order differencing scheme and requires an extrapolatory (computational) boundary condi-
tion to fix the values of vorticity at outflow boundary points. The fE modecl, which re-
presents ¢ and { as a summation of piecewise linear elements, is of fourth order for the
linearized one-dimensional advective equation. Further, a technique is developed by which
the determination of the interior valucs of £ is decoupled from that of the boundary valucs;
hence, the vorticity boundary conditions can be implemented without iterative techniqgues.
Lastly, the “infinite-order” PS model avoids the assumption of [ateral periodicity by ex-
panding ¢ and { in a doublec scrics of Chebyshey polynomials. The resulting vorticity
equation is solved in the spectral domain using a modificd alternating direction implicit
method. All three models are of second order in time and have conservative formulations
of the nonlincar terms. Intcgrations of moderate length (5-10 periods of the known analytic
solution) arc performed to determine the accuracy, stability, and efficiency of each model
as a function of problem class and the associated physicai and computational nondimen-
sional paramcters. The most important of these paramcters are «, the Rossby number; v, the
number of spatial degrees of freedom (grid points, expansion functions, etc.) per half
wavelength of the refcrence solution; and », the number of time steps per period of the
reference solution. The latter two paramcters are nondimensional mcasures of the spatial
and temporal resolition of the numerical approximation. These tests show that zll three
modecls are, in general, capable of delivering stable and efficient solutions to linear and
wcakly nonlinear problems in open domains (0 << ¢ << 0.4, 4 < v =g 10, 64 <y < 128).
Despite their added complexity, however, the FF and PS models are on the average, 4 and
15 times more accurate, respectively, than the FD model even taking into account its
increased cfficicncy. The results also suggest that given a judicious sclection of a frictional
(filtering) miechanism and;or computational boundary condition (to suppress the accuuiula-
tion of grid-scale featurcs), each of the modecls can be made similarly accurate for highly
nonlinear calculations (¢ > 0.4).
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1. INTRODUCTION

Limited-area modeling of the oceans is important for both scientific and (potentially)
practical problems including (1) simulations of geographically and;or dynamically
distinct subregions of the ocean, and (2) idealized dynamical studies of oceanic
processes and models [1]. Examples of the first kind or regional problems are limited-
area ocean forecasting [2], coastal modeling [3], and the simulation of intense current
systems and their associated instabilities [4]. Studies of the second kind are useful for
the determination of the dependence of regional dynamic balances on specific model
parameters including environmental factors, as have been donc with eddy-resolving
simulations of the general circulation of cntire ocean basins [5]. For limited-arca
ocean problems, the effects of changes in the externally imposed bounding conditions
can also be addressed in the form of idealized modeling studies. Both categories of
limited-area problems relate in a significant way to ongoing and anticipated field
measurements from a variety of modern techniques including novel four-dimensional
synoptic data sets (i.e., deep ocean regional weather maps) [6-8] and satellite surveys
of the upper ocean [9].

The general circulation of the ocean and its variability are known to be made up of
different regions of different dynamical characteristics [10]. For an oceanic regime
which is spatially statistically homogeneous, local dynamic studies can be made with
periodic boundary condition models. Such models assume that the physics is locally
determined and essentially independent of information such as scales and amplitudes
which could be gencrated elsewhere and continuously transported across the
boundaries. Such “process” models have been used to investigate the dynamical
properties of the mesoscale eddy field under simulated midocean conditions in regions
assumed to be well removed from boundary influences [11, 12]. As has become
increasingly clear both from the empirical data base as well as a growing number of
mesoscale-resolution ocean circulation studies, the most interesting subregions are
inhomogeneous [5]. For such regions (examples of which have been given above), as
well as for many other limited-area hydrodynamic problems, other more complicated
boundary conditions are necessary.

The determination of valid and convenient forms of boundary conditions,
particularly at points of outflow, constitutes a major, essentially unresolved, problem
in the modeling of many hydrodynamic systems over regional domains. The choice of
boundary conditions involves a number of physical, mathematical, and numerical
(or computational) considerations. On large and regional scales, the conditions should
correctly represent or parameterize the interaction of the (arbitrary) volume of
fluid with its surroundings. Smaller scale physical phenomena generated internally
within the region should not be trapped but allowed to pass out of the domain; i.e.,
the model boundary should be transparent for such small-scale processes. The
mathematical problem consisting of model equations and boundary conditions should
be well posed in some reasonable sense; e.g., as defined by Oliger and Sundstrom [13].
The numerical scheme chosen for computational purposes should be of desired
accuracy and acceptable efficiency.
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In its discrete (computational) form, a given numerical model may involve the use
of boundary information which is not in principle required in the well-posed analytical
problem. Such auxiliary information is known as a computational boundary condition
and should be chosen for convenience and efficiency, but should not in principle
affect physical results. In practice, specific problems appear to require special con-
ditions and a trial and error approach is usually indicated. Alternate choices of
boundary conditions do, however, affect the accuracy and stability of regionai
computations: illusirative examples are given below.

Ir this paper we cvaluate the feasibility of performing idealized open ocean calcu-
lations, using as a physical model the vorticity equation for barctropic (i.e., depth-
independent) flow in an inviscid ocean of constant depth. In an early and pioncering
atmospheric forecasting study, Charney, Fjortoft, and von Neumann [14] criginally
argued heuristically that consistent solutions to the mviscid barotropic vorticity
cquation could be obtained by specifying values of the streamfunction at ali beundary
points, and values of vorticity at only inflow points. Sundstrom [15] claims to have
established the wcll-posedness of the analytic Charney-Fjortoft -von Ncumann
problem. This result has been questioned recently, however, by Bennet and Kloeden
[16]. who suggest that the smoothness of solutions to the barotropic vorticity eguation
subject to inflow boundary conditions is in doubt due to the necessary occurrence of
points on the boundary where the flow is tangential.

Unless iterative or implicit numerical techniques or one-sided differencing schemes
are used, inviscid calculations with the discrete baroiropic vorticity equation require
some auxiliary relationship to prescribe vorticity at outflow boundary points. Several
types of boundary conditions have been used in attempts to avoid problems associated
with outflow, including extrapolatory formulas {15, 17] and radiation conditions
{18, 19]. For systems--such as that investigated here—which admit dispersive wave
solutions, appropriate forms of such boundary conditions are difiicult to detcrmine
and often quite compiex {20]. In addition, the resulting numericai scheme is often
sensitive to the specific choice of computational boundary condition. The originai
calculations made by Charney, Fjortoft, and von Neumann [i4], for instance, were
weakly unsiable duc to their choice of computational boundary condition. in another
xample. Shaniro and O’Brien [21] have also shown that, while the method of
characteristics works well as a computational boundary condition, specification of
known or presumed values of vorticity at outflow bourdary points may lead to
numerical instability.

Keeping in mind these potential areas of complication, we have attempted te
explore the possibility of barotropic regional ocean modeling by investigating and
comparing the accuracy. efficiency, and stability of three limited-area numerical
models based, respectively, on the finite-difference, finite-element, and spectral
approximation methods [22]. The physical boundary conditions used are the Charney-
Fjortoft—-von Neumann conditions. The calculations are mostly inviscid but in some
cases a dissipative filter is included. The three codes differ substantially in the details
and formal zccuracy of their spatial discretization schemes and in their treatment of
the vorticity at cutflow. It should therefore be stressed at the outset that these models
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have not been chosen to provide an unbiased intercomparison of finite-difference,
finite-element, and pseudospectral techniques in general. Our intent rather has been
to investigate a range of computational approaches representing both traditional and
somewhat more novel numerical methods and to choose that model most suited to
our limited-area modeling needs. It could not be anticipated beforehand, for instance,
how easily and efficiently the higher-order finite-element and psecudospectral schemes
could be adapted to regional modeling applications. The statement of the non-
dimensional vorticity equation and a description of the numerical techniques are given
in Sections 2 and 3.

The three models have been tested and intercompared for a variety of prototype
physical problems in closed and open basins and over a range of the nondimensional
physical and computational parameters corresponding to each problem class. First,
the unforced (homogeneous) solutions to the linear and nonlinear vorticity equation
in a closed basin are found and compared to the known exact and perturbation
solutions for linear and nonlinear box modes, respectively (Section 4). With the
addition of a body force, various exact nonlinear closed-basin solutions are con-
structed and tested (Section 5). In an infinite domain, linear and nonlinear Rossby
wave solutions are well known to be possible. These are dispersive planetary waves,
whose existence depends on the restoring force provided by the earth’s rotation.
Limited-area open domain Rossby wave solutions are obtained, discussed, and
intercompared in Section 6.

Model-model intercomparisons of this type have been carried out for simple
advective problems in closed basins (e.g., Orszag and Israeli [22]). To our knowledge,
however, this is the first such study that encompasses limited-area hydrodynamic
modeling problems as well. Following the recent acquisition of a reliable midocean
synoptic data base [6], one of the three models to be discussed (the finite-element) has
now been applied to a series of barotropic regional forecast studies. Preliminary test
results have been reported elsewhere [23, 24].

2. MODELING EQUATIONS, METHODOLOGY, AND FORMAT OF RESULTS

We consider the barotropic vorticity equation on a B-plane, which can be written
in dimensional form as

— I N EHN =Fx ), 0<x<L, 0<yp<L,. ()

where

f=5+8y

and
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In addition,
[ == V&) )

is the relationship between streamfunction () and vorticity ({), and F(x, y) represents
the effects of a body force, if any. Dissipation has been neglected for three reasons.
First, the inviscid system poses a simpler physical and numerical problem, one for
which many analytic and perturbation solutions are available. This is the basis of our
testing of the limited-area models described in Section 3. Second, quadratic conser-
vation laws are available for nondissipative physical and numerical systems. This
property also contributes to the evaluation of model performance. Lastly, by ignoring
explicit higher-order friction, we sidestep for the moment the question of the correct
specification of vorticity boundary conditions on outflow, which are not formally
needed for integration of the inviscid system. The assumption of inviscid dynamics
does, however, require that greater care be taken to construct a numerical scheme
which is stable in the absence of explicit dissipative (that is, smoothing) mechanisms.
As we shall see, such filtering is in fact necessary to maintain stability in some cases.

If we now nondimensionalize x, y, ¢, and ¥ by d, d, (8d)~%, and (¥ d), respectively,
then (1) becomes, in nondimensional form,

P
7

O Vs g Fny), O<xsx, 0<vsw, O

where the Rossby number
€ = V()i"Bd2
and
xp = L,ld, ys = L,/d

The parameters d and V, are taken to be the characteristic length and velocity scales
of the anticipated field of motion. Note that the length scale 4 does not correspond
to the basin dimensions L, or L, ; hence, xgz and yg are, in general, greater than one.
The modeling strategy developed herein involves the integration of Eq. (3) for
several sets of initial and boundary conditions corresponding to succeedingly more
complex physical phenomena in closed and open domains. The problems we will
consider include linear and nonlinear box modes, forced nonlinear box modes, and
linear and nonlinear Rossby waves. The sequence of linear problems (box modes and
Rossby waves) serve as pivotal calculations for which no boundary values of vorticity
are formally required. With the addition of nonlinearity, both accuracy and stability
of model calculations can be assessed as functions of ¢ for closed-domain problems
in which strict conservation laws apply (nonlinear and forced nonlinear box modes},
and totally open domain problems in which interaction with the surrounding
environment is possible and the question of computational boundary conditions
arises (nonlinear Rossby waves). The former experiments are the most easily under-
stood. The latter series of tests—particularly the nonlinear Rossby waves with mean
advection—are those most relevant to future open ocean modeling applications.
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Each problem thus defined has been solved using three independent (and quite
different) numerical techniques. The finite-difference (FD) scheme is second-order
accurate in space and time and has the advantage of being easily coded. It should,
in addition, be the most efficient of the three models for a fixed number of spatial
degrees of freedom. The finite-element (FE) method, though somewhat more compli-
cated than the FD scheme, is known to be of fourth order for certain advective
problems [25]. In general, we expect smaller errors with the FE model, but at a slightly
higher computational cost. Lastly, pseudospectral (PS) approximation techniques [22]
offer greatly reduced spatial truncation errors in comparison to both of the other two
methods. The PS model is, therefore, formally the most accurate but thereby it may be
subject to instabilities not seen in the FD formulation—see, for instance, Section 6.
Of the three models, it is also the most difficult to code (although it can be made
comparably efficient if care is taken to optimize the spectral transforms).

Since analytic or perturbation solutions are available for many of the prototype
physical problems examined herein, direct measures of numerical error are available
for each model. Of particular interest are the RMS errors in streamfunction and
vorticity, and the normalized difference in integrated kinetic energy as a function of
time; these area-integrated error measures are defined as

RMSW) = |[] o ~ g2 da/[[ Gho2 aa] ", (4a)

RMS(E) = {[[ (G — o da/[[ e ad] ™, (4b)

and
NDIF(NRG) == ;fpwc tdd — [[ 1 V4o 11A§/ff|v¢a PdA,  (4c)

where subscripts ¢ and a refer to the computed and analytic solutions, respectively,
and a primed quantity represents a difference from the reference solution. Using error
measures of this sort, it is possible to ascertain the accuracy of each model.

Table [ summarizes the results of all the experiments as a function of problem type
and the associated nondimensional parameters. The first nine columns of Table I
refer to the experiment number and the (not necessarily independent) quantities

(i) « Rossby number
(i) xp = ys Nondimensional basin size
(i) N Number of spatial degrees of freedom in each
direction

(iv) # = xp/(N — 1) Nondimensional mesh interval

) 4 Number of half wavelengths or turning points
of the reference solution within the domain
(nondimensional mecasure of the structure of
the reference solution)
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(vi) v =(N — 1)/4 Nondimensional spatial resolution {(number of
degrees of freedom per turning point of the
reference solution)

(vii) 4t Nondimensional time increment

(viil) 7 Nondimensional temporal resolution {(number of
time steps per period of the reference solution).

The last four columns tabulate the duration of the experiment (in periods) and the
final values of the three error measures defined above. The duration of simulations
which suffered numerical instability are denoted by brackets. No RMS error values
are listed for these experiments. Intermediate columns of Table 1 are reserved for
special parameters representative of each problem class. These will be introduced in
Sections 4 through 6.

Accompanying Table 1 is a series of figures which show in more detail the results
of one experiment for each problem category. Figures [ through 3 are typical. The
first two figures give contour plots of { and 4, and {’ and ', respectively, at the end
of the simulations for each model. Figure 3 shows the corresponding variation with
time of RMS({") and RMS(«") for each model. Contouring intervals are given in the
figurc captions and at the lower right-hand corner of each contour map.

The former (contour) plots give a visual estimate of the wavenumber content of

32
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FiG. 3. As Fig. 1. (a, b), RMS(’, ¥’): FD model, » = 16{2)*'2, 0 < ¢ < 10 periods; FE model,
v = 16(2)'72, 0 < ¢ < 5 periods; PS model, v = 8(2)'/2, 0 < ¢ <7 10 periods.
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the computed solution (and hence an estimate of its formal spatial accuracy) and
reveal any localized features (physical or numerical) that might occur. This is parti-
cularly important in those nonlinear experiments for which only approximate or
linearized reference solutions are available and for which the RMS errors are therefore
difficult to interpret.

3. MoDEL FORMULATION

3.1. Finite-Difference Model

A traditional discrete formulation of Eq. (3) results by approximating all derivatives

by second order centered ﬁmte dlfferences The advantages of finite differences are
N and Ane acoumulatad avmarianaca ~Af ncina thic

Poisson equations become

R gy — S s, (52)

and
Baath 1 By p 5t - L, (sb)

where ﬁnite difference operators §,(i%) == z/;t'“ ;— 5, and 8, (4°) = Y., —
2:/;1 ;- ¥, ;. The Arakawa [26] Jacobian J* is given by the finite-difference appro-
ximation to the equivalent form §{[¢/.{, — ¥, (o] + [($8)e — (BL)W] + [ (). +

(4,0), 1. This expression conserves vorticity, energy, and enstrophy when integrated
over a closed domain The Poisson equation (5b) with Dirichlet boundary conditions
is approximated by the standard five-point Laplacian operator and solved with the
NCAR cyclic reduction subroutine package Finite differences are of second-order
accuracy, so the total discretization error is O(%% + 4¢?).

For linear problems (e = 0), vorticity on the boundary 2 does not enter the
problem in either the vorticity equation or the Poisson equation. For nonlinear
problems (e #: 0), vorticity is specified at inflow points according to the Charney-
Fjortoft-von Neumann boundary condition [19]. Centered finite differences require
boundary data everywhere, and in contrast to the analytic problem, some auxiliary
relationship (that is, a computational boundary condition) must be assumed af outflow
points in order to determine the vorticity there (unless an iterative technique is used
to fix { on outflow).

Optimally, the computational boundaries of an open ocean model should be
transparent to signals impinging on them. Thus, the formation of boundary layers on,
or wave reflections from, the boundary are undesirable. The most successful compu-
tational boundary condition considered in this study is

(" + G = 05+ 0 ®



THE EFFICIENCY OF OPEN OCEAN MODELS 15

which was introduced by Sundstrom [17]. Here B, B — 1, and B — 2 represent a
boundary point and its first and second normal interior neighbors. Davies [18]
demonstrated the stability propertics of this closurc for a varicty of nonlincar
problems.

There are several possible physical interpretations of statement (6): Either (a) it is
equivalent to equating the time and spatial averages of { at point B — 1 (a kind of
smoothness condition at outflow); (b) it is equivalent to {,; = ¢2{,. , where ¢ = dxj4¢
(a “local” wave equation); or (c) it is a low-order spatial extrapolation scheme.

In order to implement the Sundstrom/Davies formula, the quantity (57} is
eliminated by application of the vorticity equation evaluated at the point 8 —- i,
{ = k 4z. This yields an implicit set of equations for the boundary vorticity. Formally,
this requires the inversion of a heptadiagonal matrix with cyclic ordering of the
points. However, it can be shown that by elimination of those boundary points which
are corncer ncighbors, a simple tridiagonal system results, provided there is at least
one inflow point (Appendix). Note that the boundary vorticity is calculated after the
interior vorticity and the streamfunction.

Other computational boundary conditions investigated in this study are the
extrapolation {p* = 251 — ¢E-1 [13] and the condiion {y = {s corresponding to
the exact specification of the outflow vorticity. Note once again that thesc compu-
tational boundary conditions are used to determine values of vorticity at outflow
boundary points only; elsewhere on the boundary, independent values of vorticity
are supplied in accordance with the Charney-Fjortoft-von Neumann prescription.

3.2. Finite-Element Model

In the finite-element formulation, we assume a set of basic functions consisting of
piecewise polynomials, the simplest being piecewise linear elements arranged in a
rectangular lattice. In one dimension, each element is a chapeau or hill function, and
in two dimensions, a pyramidal function, cach centered on the lattice point with
base width 24 [25]. Then the basis functions have the property

$lz,) =1 if p=gq

(N
—0 if p/ g,

where z,, 1s the pth lattice point. All fields can be expressed in terms of a summation
of the basis functions; for instance,

¢'(x’ t) - Z Sz‘q(t) ¢q(x)’ (8)

Lx, 1) = 3 L(1) $u(x), (9

where x is a general point within the domain.

581/34/1-2
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The weights ¢, and {, are obtained by the Galerkin procedure. Substitute (8) and (9)
into the vorticity equation, multiply by a basis function, and integrate over the
entire region. Since each element overlaps those adjacent to it, in general, each
equation will contain terms from its eight neighbors.

For closed-domain problems, we use centered time differences. The resulting
finite-element form of the vorticity equation is

ML) = M(LY) — 24t QF = PR, (10a)

where

0 = 52_ JEQPE, 07 — %1 W8 (%),

In partially and completely open domains, however, a second-order Adams—Bashforth
time-differencing scheme is used to avoid computational instability. In such cases,

MEY) = ML) — AH30° — 30°1). (106)

The mass matrix M has the entries M, = [[ ¢,é, d4. M is factorable into two parts,
M == W= @ W where X denotes tensor multiplication and the matrices W@ and
W) are tridiagonal with the local form (1 4 1). The operator W ® W™ can be
interpreted to mean successive multiplications —first rowwise, then columnwise— by
the matrix W = W@ = W®. Note that the superscripts (x) and ( y) refer to the
order in which the tridiagonal multiplications are done. At each time step, therefore,
Eq. (10) can be written

M) = W@ @ WW((kit) = pks1,

where (¥t is the N X N matrix of values of { at time step (k + 1). In this form, it is
clear that Eq. (10a) is equivalent to two tridiagonal matrix systems each of size N x N.
The mass matrix can therefore be readily inverted. Note that if W is set equal to the
identity matrix, Eq. (10a) reduces to the finite-difference form (5a). The Jacobian term
is precisely the Arakawa Jacobian employed with finite differences [26]. In fact, the
Arakawa form is derivable from the finite-element formulation [27].

Fix [25] has shown that linear elements for the linearized advective equation
{; -i- UL, = 0 produce fourth-order accurate phase errors. To maintain this accuracy
for the vorticity equation, the solution of the Poisson equation for the streamfunction
must also be of fourth order. This is accomplished by the method of deferred correc-
tions [28]. Note that

K() = B2 V2 + TIE B (Vs — 2 L) & + O,

0x2 gy?
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where K is the usual five-point Laplacian

0 1 0
K={1—-4 1
01 0

Therefore two successive Poisson solutions yield ¢ to fourth order in the following
manner. First, obtain a second-order solution, i, , from K(i,) = A2(. Then, a
fourth-order estimate of ¢ is the solution to

’ 84

Ky — g+ 2 (VL = 257 1). (i)

12 ox? iyt ’

Finite elements require more computational work per time step than do finite
differences. First, two tridiagonal inversions must be performed to determine the
vorticity field, contrasted with a simple direct substitution in finite differences. Second,
two calls must be made to the Poisson solver instead of one. The significant increase
in accuracy plus the virtue of using a technique based on a variational principle
justify this increased computational effort in many applications, as indeed they will
here (see, for instance, Section 6).

In the finite-element model, vorticity boundary conditions are implemented in the
following manner. For ease of presentation, we introduce three types of points and
their respective computational molecules m, that is, their local contribution to mass
matrix M:

I 4 1

(a) interior points my=1/36{4 16 4) (12a)
1 4 I
01 2

{b) regular boundary points my = 1/36 {0 4 8 (Eastern wall) (12b)
0 1 2
0 0 0

(c) corner points msg — 1/36 {0 1 2] (Southeast corner) (12c)
0 2 4

\

The lattice point associated with the given element is denoted by boldface type.
Analogous computational molecules exist for regular boundary points on the
northern, southern, and western walls and for the southwest, northwest, and northeast
corncr points.

Assume first that vorticity 1s specified everywhere on the boundary (corresponding
to inflow everywhere) and that solutions are needed only for the interior points.
It is then easy to show that this is equivalent to the system of equations:

ML= = Py, (13)
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where

P, =P for interior points,

1
=P— (4) {s/36 at (eastern) boundary,
1

0 01
=P — <0 0 4) {s/36 at (southeast) corner.
I 4 1

(14)

{g is the specified boundary vorticity, and M, =- W& ® W, where W,

(=W = w¥)is the (N — 2) x (N — 2) tridiagonal matrix

1 4 1
| 1 4 1
W =g \\\
I 4 1

The subscript (4) refers to the corner terms in (15).

(15)

Next consider the case where vorticity is not specified anywhere on the boundary,
as in a basin totally enclosed by solid and/or outflow sides. Here solutions are sought
for the entire field (interior, boundary, and corner points). It is then easy to show that
the combined system including contributions of the form (12a)-(12¢) is equivalent to

My({&1) = Py,
where M, = W @ Wi, and
2 1
I 4 1
1
". =% \\\
1 4 1
1 2

is now N X N.

(16)

(7

These two cases represent extreme situations—either all inflow, or all outflow
(and/or solid boundaries). We seek a method which will allow a general mix of
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inflow and outflow sections around the boundary. We can do this by defining a new
matrix, M,,, , which has the computational structure

My, = for points not at or adjacent to the
boundary (i, j = 1,2, N — I, N),
== My — S for interior points adjacent to the

(eastern) boundary but not near a
corner (i = N — 1,j # 2, or N — 1),

= my — ymg — dms -+ Jmsp  for interior corner (southeast) points
(== N—1,/=2), (i8)

and so on for points adjacent to other boundaries and corners. [t can be shown that
this new formulation decouples the determination of the interior vorticity from that
of the boundary vorticity and is equivalent to

Mayp(L57Y) = Py {19

where P,,, has the same relationship to P as M, to M given in (18). In addition,
My, = W7(72) &® W;% , where
72 1

1 4 i
1
Wase = & \\\\
1 4 i

172

and all of the unknowns are mterlor pomts In short, we use the known dynamic

1 PO LSNPS RO ROV SIS o S N —

from the other.

Furthermore, given the interior values of vorticity from the inversion of A/, ,
each of the four boundaries can be decoupled from its neighbors by using the identical
strategy. That is, using cornerpoint dynamic relations—with computational structure
as suggested by (12¢) —the cornerpoint values of vorticity can be eliminated from the
solution of the remaining boundary points. The resulting matrix equation—for
instance, for the eastern boundary minus its cornerpoints—can be written

72 :
2 8 2
2\ 8\ 2\
SN |G = R (20)
2 8 2
2 8 2
v 2 7J
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where {g is the (column) matrix of unknown vorticity values along the eastern
boundary (minus corners) and vector Ry contains only known information from
previous time steps—i.e., the right-hand side of (10b) evaluated at the eastern boundary
points (including corners)—and terms reflecting the newly updated values of interior
vorticity. When, as prescribed by the C-F-VN criterion, values of vorticity are to be
imposed at a particular boundary point, the appropriate row in matrix equation (20)
and element in Rg—the ith, say—are replaced, respectively, by the ith row of the
identity matrix and the desired value of vorticity. Each set of boundary values—minus
cornerpoints—is obtained by an inversion of an analogous tridiagonal matrix
equation. The cornerpoint values then follow algebraically.

In the finite-element approximation, the order of calculation is therefore the fol-
lowing: interior vorticity, vorticity at regular boundary points, vorticity at corner-
points, and lastly the streamfunction. The reader should note, however, that this
solution procedure does not strictly guarantee that values of vorticity on, or adjacent
to, points of inflow be in exact dynamic balance.

3.3. Pseudospectral Model

We seek a (discrete) spectral solution to Eq. (3) subject to some appropriate set of
boundary and initial conditions. For definiteness, consider specifying boundary values
of streamfunction and vorticity in the manner first suggested by Charney, Fjortoft,
and von Neumann [19]. That is, we take as given quantities the values of i everywhere
along 2, and { at those points along X' characterized by mass influx. Boundary values
of vorticity at outflow points are therefore unconstrained; they are computed as part
of the calculation. Under these boundary conditions, a completely enclosed domain is
a special case, one for which—owing to the absence of any inflow at all—vorticity
need never be specified at any time along 2. In analogy to the analytic problem, we
make a computational distinction between problems contained within bounded
regions and those characterized by partially or fully open domains.

3.3.1. Closed Domain

In a closed system, the advective terms in Eq. (3) are treated explicitly by a leapfrog
time-differencing scheme. Under this second-order approximation, the vorticity and
Poisson equations become, in the usual notation,

et = 01— (T, ) + )
= R*(x, y) (21)
and
V2kil = [, 22)

In space, we adopt a pseudospectral approximation technique for which the dependent
variables are expanded in a series of Chebyshev polynomials; that is, let

P =Y Y EuTol® Tuld), —1 <5 §<+1, (23a)

7=0 m=0
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N N
H2,9) = Y. ¥ bunTn(® Tu(d), {23b)
n—-0 m=0
and
N N
Rk(:’e’ 5’) = Z Z R:an(ﬁ) Tm(j’)s (230)
N=0 M=0
where
£ = (2x — xp)/xp,
F =@y —yaiys,

and T,(£) = cos(n cos™! £) is the Chebyshev polynomial (of the first kind) of degree #,

a function of the linearly stretched coordinates £ and #. On the collocation grid
(£,,99) = (cos(mp/N), cos(mg/N)), 0 < p, ¢ < N, this implies, for instance, that

N

N
k(o _ k wpi E g wgm
x5, 5o) ngo mz=0 s, cos ; A o8 =t

demonstrating the important fact that a Chebyshev transform is equivalent to a
cosine transform on the (nonuniform) collocation grid (£, , #,) and as such can be
implemented very efficiently using special forms of the fast Fourier transform
algorithm [29].

Under these definitions, Eqs. (21) and (22) can be rewritten in terms of the spectral
coefficients a,,, , bam , and R,

Pl =R, 0<n, m<N, (24)
and

[@™® + a*¥}kit = BELL, 0<n m<N, (25)
where 477, and al?, satisfy

62

o)

cx

R NI AT AT

Y @T (%) T,

Il
M=

n=0 m=0
and
2‘7’ 62% ) nm n() m(A)
5 Y -~ a ] X ] y
cy YV

Y G To(%) Tl 9.

0 m=0

I
M=

”



22 HAIDVOGEL, ROBINSON, AND SCHULMAN

Unlike periodic models, the resulting spectral scheme can accomodate quite arbitrary
boundary conditions on 2. In the present bounded geometry, ¥(x, y) is given on the
boundary by some set of values, let us say . In terms of the spectral coefficients a,,, ,
this is equivalent to requiring that

N
Y2 @nln(F) = $s(+1,5), 0<g <N, (26a)
n=0 m=0
N N
Z (_])n Z aanm(j’q) == ¢’£(_1, ya), 0 < q < N, (26b)
n=0 m=0
N N
Y Y @wmTuldy) = ¢s(x,, +1),  0<p <N, (26¢)
m=0 n=0
and
N N
(_l)m Z aann(&p) = l/’Z(xp s _1)5 0 <P < N9 (26d)
m=0 1:==0

These conditions are imposed on the Poisson equation (22) by using the spectral
analog of the tau method [30], that is, by neglecting the highest-order dynamic
equations—those for n = N — 1, N and m = N — 1, N—in (25). The remaining
equations are then supplemented by boundary conditions (26a)~+26d), written in their
equivalent Chebyshev series form, to close the problem. The resulting matrix equations
are riot sparse; however, they are quite easily diagonalized. The details of the solution
have been given by Haidvogel and Zang [31] who show that, for sufficiently smooth
fields and given accuracy, solutions to Poisson’s equation can be computed at least
as efficiently by these spectral techniques as by certain second- and fourth-order
finite-difference methods.

Once the spectral cocfficients a’;! have been determined, thus yielding (x, y) at
the next time level, the velocity components ¥ = —, and » = -5, can be computed
from well-known Chebyshev derivative relations. These in turn are combined to give
the nonlinear term J(i, {) == V - (v{) by the simple pscudospectral procedure

&
oy

Vo (Dlae = o [(Es, 52 Ly s 5 + = [ 30) Loy 5L

where the product v{ is determined locally by physical space multiplications on the
collocation grid (£, , §,) but the derivatives ¢/éx and &/¢y are performed spectrally.
The resulting scheme is of infinite-order accuracy and can be constructed so as to
conserve any of the higher-order invariants such as energy and enstrophy; however, it
retains the effects of high wavenumber aliasing at full strength [32]. The effects of
aliasing can be identically removed, but-at a large cost in computational efficiency
(approximately a factor of 2).
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3.3.2. Open Domain

In the spectral approximation, boundary conditions can only be correctly applied
if the highest-order terms are treated in some way implicitly. For those problems in
which the domain of integration is not bounded by an impermeable surface and for
which, therefore, values of the vorticity arc to be specified at points of inflow, this
implies that the advective term must be treated somewhat differently than in a closed
region. To do so, we adopt the following alternating direction implicit (ADI) time-
differencing scheme.

e S0 gy = ey
, dr ¢
vt L
3 4t
— 2T — ) U+ g
4, \v 77 - k—1/2 72)
+ 7 Vv = Vo) L]t (272)
gkt —6_2A_t 66y (1 D = Lyl
= {12 f_;f _;Y_ () +112
34
— 2 L = o) 8
. Ar Lok
T "'4" {GV ' [(V - VO) C] T l/}a:fia (27b>
where
uy i x, y) = x{uF(l, p) — W (=1, p) R wFT(=1, p),
7 3) = A, 1) = R =D o =),
and

u’“l(—-l,y), uk;l(_:_]’ ,V), K H(X, _11)’ i l(.X, _l)

are the known distributions of normal velocity at time step (£ - 1) along the western,
eastern, northern, and southern boundaries, respectively. In effect, this semi-implicit
procedure removes and treats implicitly that portion of the advective term which
arises from contributions due to nonzero normal velocities at the domain edges. The
splitting of the advective term relaxes the restrictive Courant condition which arises
for explicitly differenced inflow/outflow problems due to the crowding of Chebyshev
collocation points near the domain boundaries.

The solution of each half step—Eq. (27a) or (27b)—procceds similarly. Cousider
(27a). The implicit advective effects introduce a coupling only in the x direction. In
fact, along any line § =+ §, =: constant, u} (£, 7,) is at most linear in £ Under these
circumstances, operator L;({*<1/2) can be expressed spectrally as a sequence of
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tridiagonal matrix equations, one for each $, (0 < ¢ << N). Similar remarks hold for
operator L,({**1), which is repeatedly solved along lines of constant £ = %,
(0 < p < N). In either case, vorticity boundary conditions are selectively introduced
in place of higher-order (dynamical) equations in each tridiagonal system. Zero, one,
or two vorticity conditions are imposed, depending on the corresponding number of
end points of the line £ = £, or § = 7, which are inflow points. The resulting
numerical scheme fixes the value of { only at inflow points; however, all values of
boundary vorticity are in exact dynamic balance with the interior. (This is not true
of either the FD or FE models—see the preceding sections.)

Once Eq. (27a) or (27b) yields {¥+172 or ¢#+1, the associated Poisson problem for the
streamfunction field *+/2 or *+! are solved as outlined above for a closed basin.

4. LINEAR AND NONLINEAR Box MODE TESTS

In this and the following sections, we briefly describe the formulation and selected
results of the prototype numerical tests mentioned in Section 1. For a more complete
summary of the results, the reader is referred to Table I and Figs. 1-16. (See also
Section 2.)

4.1. Formulation

The class of exact solutions to the linear vorticity equation (e = 0) satisfying
homogeneous streamfunction boundary conditions on % are the box modes or

%. i |

s Vs — WY ) LU A 1 LjL), UxxA == AR, V = )y = Yy, \4£0)

where x and 7 have been scaled with respect to d and (Bd)~", respectively, and d is
taken to be the scale length of the traveling wave (wavelength/2#). The parameters A
and pu, and the domain size x3 == yp are related to the integer mode numbers, m and n,
by the relations

A = m/(m? -+ n¥)1/2

p o= nj(m® + n2)1/2,
and

xp == yp == m(m? + nH/2

Given this nondimensionalization, the linear box modes have a wavelength, period,
and phase speed given by 27, 47, and #, respectively. Corresponding to these physical
measures are the computational measures

4 = xg/m = relative box size,

v = (N — 1)/d = (N — 1)=/xg = spatial resolution parameter,
and

n = 4x/dt = temporal resolution parameter.
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As mentioned previously, we use N to refer to the number of spatial degrees of
freedom (grid points, spectral functions, etc.) which characterizes the x and y
discretization of each model.

For € <€ 1, we can obtain an approxomate solution to the nonlinear box mode
problem using a small-amplitude expansion in e. Let

‘//(x’ »t) = ¢'o + 6(/11 -+ 621/}2 4 -

where ¢, is the linear box mode solution (28). Then, to first order,

Va3 + e = —J (o . Vi) 29
which has the solution
dulx, y, t) = sinQuy) g-— % sin? Ax 4 7(_1){”7#2)—
X [cos(t + 2x) — (—;Lnnél ;;B—) cos (t + % 4 3’.;}2)
R ey 5] =

with
R = (4u® — P2, u> L

Taking the expansion to second order, the right-hand side of the equation for i,
has a component proportional to i, . This secularity destroys the uniform convergence
of the approximation for large ¢. Following Pedlosky [33], it can be shown that by
introducing the new time scale 7 = r(1 < €25), all forcing terms proportional to i,
can be suppressed for a suitable choice of 8. The perturbation solution ¢ = i, + ey
can therefore be corrected by replacing 7 by = in (28) and (30). The resuiting expression
is correct to first order; that is, its leading-order error is O(e?). Since the computed
solution can be closer to (or further away from) the correct nonlinear solution than
the approximate analytical solution, the RMS error is an unknown mix of errors in
both the computed and approximate solutions.

4.2. Finite-Difference Model Results
(Table 1, Cases 1-9; Figs. 1-6)

An exact solution, iy, to the discrete finite-difference equations {5a) and (5b)
can be found by assuming

Palx, y, 1) = sin(Ax) sin(uy) cos(xx + at), €2

where o and o are, in general, functions of the nondimensional space and time
increments s and 4t. (We therefore assume that the discrete and analytic results
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F1G. 6. AsFig.4,Cl = 0.1. (2), {: FD model, {5 = &, ;(b), {’ : FD model, ¢ specified by Kreiss
condition; (¢), ¢’ : FD model, {5 specified by Sundstrom/Davies condition.
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differ only in the wavelength and phase speed of the traveling component of the box
mode.) Substituting in the trial solution (31), we find that

sin(o 4t) = 1/2h 4t

and
_ cos h(Ah)
cos(ah) = > cos(ﬁz-)"
For h € m and 4t £ 7,
2
x=1 - ‘1‘5 (2 + wd) B+ O(hY)

and
o = 1)2 + 1/48 At* — 1)24(4 — 2pu® — p) I? -+ O(4r* - h¥).

That this is indeed the correct computational result has been verified by direct
numerical integration of the finite-difference equations (5a) and (5b). The resulting
computational solution differs from (31) only due to machine truncation error —that
is, RMS(Z") == RMS(e — L) = 001,

In comparison to the analytic solution (for which x - = 1 and ¢ = }), the wavelength
and period are correct only to second order in space and time. For sufficiently small
phase errors ¢ (==0a — gy), it is easy to show that

RMS() == [2(1 -— cos ¢t)]H/2
The initial error growth rate
RMS(4") ~ ¢t + O(t)® (32)
is therefore linear in time with a slope given by

¢ = (1/48) A2 — 1/24(4 — 22 — %) b
~ (723) 5 2 — 7%24(4 — 2p® - pd) vl (33)

An example of this behavior is given in Figs. 3a and b for (v, u, m, n) == (16(2)!/72,
128, 1, 1).

Note that for the discrete finite-difference solution, the spatial and temporal
contributions to the phase error ¢, being of opposite sign, tend to offset each other.
Because of this compensation effect, if an optimal choice of 4¢ and 4 is made, the total
error of the finite-difference scheme can be made quite small although the contributions
to ¢ from spatial and temporal error are individually large. This property explains
the computed results as functions of v (~~=/h) and n (=4m/4¢t) in which increasing 7
(holding v fixed), and vice versa, can increase, rather than decrease the error of the
computed finite-difference solution. Compare, for instance, Table I, cases 2 and 3.



30 HAIDVOGEL, ROBINSON, AND SCHULMAN

For € > 0, the values-of { on the boundary enter the problem through the nonlinear
terms. Three ways of fixing {5 have been examined in the context of the finite-difference
model. They are the specification of the analytic value of the vorticity ({z = {a),
and the Kreiss and Sundstrom/Davies conditions—see Section 3. For the nonlinear
box mode problems studied, the following behavior was noted.

421. ¢ =02

For low to moderate Rossby number the FD model is always well behaved out to
at least ¢+ = 5 periods independent of computational boundary condition. When
{z = 4 is the required condition, however, there is a buildup of small-scale pertur-
bation vorticity on the western wall—Fig. 6a. (Since similar effects are noted in all
the models, this buildup is presumably a manifestation of the physical response of
the system to the presence of small-scale numerical truncation error.) This accumu-
lation of {' is less rapid when the Kreiss boundary condition is applied everywhere
(Fig. 6b) and is nearly eliminated when the Sundstrom/Davies condition is invoked
(Flg 6¢). The RMS error _measures are, however, comparably large—several tens

422. ¢ =04

For higher Rossby number, the error accumulation to the west is much more rapid
and becomes noticeable in even the Sundstrom/Davies experiments. In contrast to
the finite-element and spectral models, however, the finite-difference scheme does not
suffer catastrophic numerical instability when grid-scale vorticity begins to accu-
mulate. This lower sensitivity to the presence of small-scale vorticity is perhaps due
to a small amount of (numerical) dissipation implicit in the finite-difference formalism.
In general, the RMS error quantities have a linearly increasing trend similar to, but

W‘Ahﬂl_ﬁa_ _ [ W DN 'S NP PV PPp: I D Y ]
'—
butable to the approximate nature of our reference solution.

4.3. Finite-Element Model Results
(Table 1, Cases 1-9; Figs. 1-5)

The following functional dependence on the parameters v and 5 has been noted
in the error analysis of the finite-element model results.

431 € =0, <42y

For relatively coarse temporal resolution, the RMS error quantities are well
described, as in the finite-difference and spectral models, by the relation ¢ ~ (#?%/3) n~2
and consequently by an initial linear increase with time proportional to =2 This
reflects the fact that for sufficiently large v the error is attributable to temporal
truncation effects (identical in all three models).
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432 € = 0,7~ 422y

As g increases, RMS({") for the finite-element is characterized by a large initial value
followed by a very slow linear increase thereafter (Fig. 3¢c). (RMS(y)')—whose values
are perhaps dictated by a different mechanism than those of RMS({'}—maintains
a hinear trend.) Apparently, the spatial contribution to the phase error ¢ is of a form
quite different than that implied by (33). For one thing, we know the phase error
to be proportional to A' for the linearized advectvie equation [25]. Tn parameter
ranges where this diminished error growth rate prevails, the finite-element model
may ofter some advantages for long-term calculations; howcver, we have not verified
this possibility.

For e == 0, the maximum pointwise errors in vorticity tend to be near the western
boundary, but there is very little preferential accumulation of small-scale vorticity
there. With nonlinearity (¢ >~ 0), the situation is qualitatively different in the following
way(s).

433, € =- 0.2

With ¢ - 0.2 an initial eastern boundary layer is generally observed in the field of £'.
This boundary layer eventually disappears, to be replaced by an accumulation of
perturbation vorticity on the western wall, as in the FID and PS simulations (Fig. 3¢).
In other respects, the solutions bear some resemblance to those for ¢ == 0. RMS({)
again shows evidence -for certain values of v and n of leveling off with timc aftcr
an initially large increase, and " sometimes resmebles a box mode (out of phase with
the reference solution).

434. ¢ =04

With stronger nonlinearity, perturbation vorticity on the grid-point scale collects
first on the western wall and then in the center of the domain (perhaps as a numerical
response to insufficient resolution of the narrow wall layers of {’). Once this stage is
reached, the solution becomes numerically unstable, typically after about five periods
{Table 1, case 7).

This catastrophic effect of small-scale vorticity accumulation is reached in less than
a period for ¢ - 0.8.

4.4, Pscudospectral Model Results
(Table 1, cases 1-9; Figs. 1-5)

For linear box modes, for which we have the analytic solution, the spectral model
shows three distinct types of behavior corresponding to different regimes in the space
of the nondimensional computational parameters.

4.4.1. € == 0, n <€ 16(2*"2 v

Quite a large range of v exists for which spatial truncation errors are totally
insignificant in comparison to those arising from time-differencing. For this range of

581134/1-3
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parameters, the RMS quantities grow linearly in time (Figs. 3e and f) and can be
quantitatively explained by the simple phase error analysis of Section 4.2 if, in
addition, the assumption is made that s ~ 0. There is no apparent buildup of
perturbation vorticity at scales other than those of the box modes themselves. Since
the computational errors are due to time-differencing alone, they are proportional to
n~2—see Table I, cases 1 and 2.

442, ¢ = 0,7~ 16Q2)"2 v

For v ~ 4 and standard values of v (=64 or 128), spatial error becomes noticeable.
The growth of the RMS quantities is no longer strictly linear. In fact, the temporal
variation of RMS({’) begins to assume characteristics noted (over a larger range of v
and 7) in the finite-element model: a large initial error growth, followed by a relatively
slow increase with time. Indeed, it is interesting to note that the spectral model can
show the effects of compensating space- and time-differencing errors, which is a
general property of the finite-difference model. Something of this kind is clearly
happening in the spectral model when, for instance, RMS(y)') decreases when the
box mode numbers m = n are increased from 2 to 3 at constant v and n (Table I,
cases 4 and 5). For these values of v, perturbation vorticity does appear to collect on
the western wall, perhaps in scales much smaller than those of the original box modes.

4.43. € =0, > 1622 v

As expected, for extremely small values of the resolution parameter », substantial
spatial error results, The RMS error quantities once again grow in a quasi-linear
fashion. The perturbation vorticity field is now dominated by a narrow layer on the
western wall. The amplitude of this feature is sufficiently large (after 10 periods)
to contribute recognizably to the total vorticity field.

For the nonlinear box modes, behavior of the computational system depends
sensitively on ¢ in the following manner.

444. € = 0.2

For ¢ < 0.2, the spectral model is well behaved out to ¢ ~ 5 periods. By this time,
however, integrated | V{ |? has begun to increase rapidly. Significantly longer inte-
grations could therefore be expected to suffer eventual computational instability.
Even at this level of nonlinearity, increasing v and or 5 (over the range tested:
v = 8(2)*7, » = 128) does nothing to improve the error measures (Table I, cases 6,
8, 9). The manifestation of error growth is a very definite pereferential accumulation
of perturbation vorticity in narrow layers adjacent to the western wall of the domain
(Fig. 5e). This accumulation of perturbation vorticity may ultimately result from
local numerical truncation errors which are propagated to the west where, in the
absence of dissipation, they collect in a narrow boundary layer.

44.5. ¢ =04

The results for € = 0.4 are much more catastrophic, with perturbation vorticity
collecting so quickly on the western wall that locally intense gradients of vorticity
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grow to destroy the calculation after only 2.5 periods (Table 1, casc 7). This behavior
is once again independent of v and ». When the calculations go bad, they do so very
quickly; presumably the computed fields arc still quite accurate up to the instant of
catastrophic failure. (This essentially instantancous instability is a feature of the
FE model also.) In a related calculation, it has been shown that the useful integration
of the spectral model can be prolonged to ¢+ = 5 periods (and beyond) by periodically
filtering the vorticity field by setting

bﬁm(ﬁltered) 5 jnfmb:m

{see Section 3.3), where the spectral filter
fo = 1.0 — exp{— (N> — n?)}

and # is adjusted so that {* is smoothed only at the highest wavenumbers. By
comparing the filtered and unfiltered results, it is known that such filtering does not
affect the large-scale features of the circulation and that the two streamfunction fields
(up to the moment of instability in the unfiltered calculation) are virtually identical
(an cxample is given in Fig. 13, Section 6).

Lastly, it is important to note that the RMS error quantitics for the nonlinear box
mode problems are nearly independent of v and 7. If there is nothing idiosyncratic
about these problems, then we must conclude that the largest contribution to the RMS
error fields comes from the uncertainty in the exact analytic solution to the nonlinear
box mode problem.

4.5. Intercomparison

Results from the linear box mode tests (sec Table I} demonstrate that the finite-
element {with N :- 33) and pseudospectral (with & .- 17) models are comparably
accurate over the range of v and » studied. {The spectral medel is, however, somewhat
more efficient—Table 11.) And, even though the finite-difference is by far the least
accurate model, a phase error analysis of thc FD model results shows that errors
can be minimized for optimal choices of v and #. Since these optimal paramcters are
functions of the time and space scales of the problem, however, this property will be
of questionable value in more general problems characterized by multiple time and
space scales. Even if a degree of compensation could be guaranteed in a specilic
problem, errors get smaller only if v and v are increased in the same ratio. A fourfold
decrease in the RMS errors would therefore require % and v to be simultancously
increased by a factor of 2, with a resulting increase in computational work of a factor
of 8. In contrast, the spectral model, and to a lesser extent the FE model, generaily
require only 7 o be increased—say by 2, for a fourfold reduction in error--because
of their much greater spatial accuracy.

In the case of the nonlincar box modes, interpretation of the results is compilcated
by the fact that we have only a perturbation solution with which to compare the
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TABLE 11

Approximate Model Running Times as Functions of N (CPU Time in Seconds on the NCAR CDC
7600 per 100 Time Steps)

Linear Rossby waves Nonlincar Rossby waves

N FD FE PS FD FE PS
17 1.5 3.1 3.7 2.0 34 12.1
33 6.3 13.1 10.6 8.3 14.0 31.1
33:17 4.2 4.2 2.9 4.2 4.1 2.6

¢ The ratios of the running times (also listed) indicate that the computational time increases as
approximately N2 for the FD and FE models and as N In N for the PS model. Running times for the
other linear and nonlinear model problems are comparable to those quoted here for the Rossby
wave calculations,

computational results. Consequently, our error measures—such as RMS(:), etc.—
reflect three sources of error: spatial and temporal truncation errors, and the error
associated with not knowing the exact analytic solution. The RMS quantities listed

nTable1 Em‘_ﬂ,\ i ests cannot be nsed asdirect measnresof model

The essential qualitative distinction that can bc made between the results of the
three models for € > 0 is that the finite-difference model, though presumably less
accurate, appears not to be susceptible to catastrophic numerical instability when
small-scale error fields are present. Under these conditions, the FD spatial truncation
error is, however, formally quite large. A nonlinear FD solution will therefore become
invalid after only a short period of time even though a stable calculation can be
maintained for a much longer time.

5. FOrRCED NONLINEAR Box MODE TESTS

5.1. Formulation

One means of avoiding the complications associated with having only a pertur-
bation solution to the nonlinear box mode problem is to consider the analogous
forced problem, that is, to seek solutions to the inhomogeneous equation

aﬁt Vi + eIt V) + b, = F(x, 3, 1), (34)

where F is some suitably chosen forcing function. As before, i is required to vanish
on Z. In particular, we wish to examine solutions with spatial and temporal character-
istics similar to those of the linear box modes. Accordingly, set

a(x, y, t) = sin x sin y cos(ax + by + ct), 0<x,y<m, (35)
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where «, b, and ¢ are arbitrary constants which determine the wavelength, period, and
phase speed of the forced mode (27/(a® + b%)!72, 27/c, and cj(a® + b?)!’2 respectively).
This will be a solution to (34) so long as

F(.’\.* Vs t) _CC[_ Vz | 6‘](9/)"1 ’ VZ) - ':?; l/la(.‘(, Y. t)- (36;

which will in general be nonvanishing, as will J(ys, , V24,). Given specific values of
parameters 4, b, ¢, and e, the functional form of F can therefore be directly calculated.
tor the following tests, the Rossby number has been fixed at ¢ = 0.2. An examination
of higher ¢ behavior is reserved for the open boundary calculations of Scction 6.

5.2. Finite-Difference Model Results
(Table |, Cases 10-12; Figs. 7--9)

Table 1 shows the RMS error measures for the finite-difference model after two
periods for a varicty of values of » and #. The results indicate that the FD error norms
are in general somewhat smaller than those for the linear box mode problems with
comparalbe nondimensional parameters. Compare Figs. 3a and b and 9a and b, for
instance. In addition, a partial compensation between spatial and temporal errors
once again exists so that the RMS errors (as in the linear box mode cases) need not
decrease with increasing n and v (Table [, cases 11 and 12). As in the nonlinear box
mode problems, perturbation vorticity tends to collect on the western boundary
{Fig. 8a). This appears to eb a quite general property of all the simulations when
€ = 0, regardless of the orientation of the forced mode.

5.3. Finite-Element Model Results
(Table 1, Cases 10-12; Figs. 7-9)

The FE model behaves similarly, yielding very accurate and stable solutions for 2
range of parameters (Table 1, cases 10-12). For instance, with (v, %, a, b} -
(32,128, 1:2'/2, 1,212y the RMS errors are O(1-2 %) after two pertods. As in the FD,
and as we shall see, the spectral computations, the RMS errors given by the FF
solution to the nonlinear forced box mode problem are typically no less, and very
often several times smaller, than the errors noted for the linear unforced box mode
tests with comparable resolution. Figures 3¢ and d and 9¢ and d give an example of
this behavior. (Note also that the character of the RMS error curves seems to be
modified by the forcing such that RMS({’) is now a quasi-linear function of time over
the range of parameters examined here.) The perturbation fields associated with the
forced problems, aithough small in amplitude, are still characterized by small-scale,
westward-trapped (' and large-scale i’ patterns (Fig. 8).



36 HAIDVOGEL, ROBINSON, AND SCHULMAN

777
////
o
/'/////

Ve dd
oo
PALS

<
P
~

Fic. 7. Forced nonlinear box modes with (v, 9, a, b, €) = (32, 128, 1/2'/2, 1/2%/2, 0.2). (a, b),
(&, 4): FD model, t = 2 periods, CI = (0.4, 0.1); (¢, d), (¢, #): FE model, r = 5 periods, CI =
(0.7, 0.1); (e. £), (€, ¥): PS model, # = 5 periods, CI = (0.4, 0.1).
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0.04
{a}

0.06

{e)

Fic. 8. As Fig. 7. {(a, b), ({, ¥): FD model, r = 2 periods, CI = (0.04, 1.0 X 107%); (¢, d),
(€, ¥'): FE model, ¢ = 5 periods, CI = (0.1, 4.0 x 10~9; (e, f), ({', ¢"): PS model, r = 5 periods,
CI = (0.06, 2.0 x 1074,
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Fic. 9. As Fig. 7. (a, b); RMS(Z, ¥'): FD model, 0 < 7 < 2 periods; FE model, 0 << 5
periods; PS model, 0 < 7 < § periods.

5.4. Pseudospectral Model Results
(Table I, Cases 10-12; Figs. 7-9)

These calculations were all performed with very high spatial resolution (v = 16);
consequently, insignificant spatial truncation error is expected. With a diagonally
propagating mode (@ = b = 1/2'/2) and n = 128, the RMS errors are in fact very
small, being no more than 0.5 ¥, after five periods of integration. Reference to Table I
and Figs. 9¢ and f demonstrates, however, that not only are the RMS errors no longer
strictly proportional to »~2—as they were in the unforced case with sufficient spatial
resolution—but the error trends are not linear in time. Although RMS({") increases
monotonically, RMS(s)") seems to vary quasi-periodically with little superimposed
trend (Figs. 9e and f).

As in the FD and FE simulations, the PS results for the forced nonlinear box mode
problems show a similar tendency for small-scale {’ to accumulate at the western edge
of the domain (Fig. 8¢). The rate of this error accumulation might plausibly be thought
to increase dramatically with ¢, as in the nonlinear box mode problems; however, this
hypothesis was not tested. ‘

None of these conclusions depend sensitively on the direction of propagation of the
forced model.

5.5. Intercomparison

All three models are capable of delivering an accurate and stable solution to the
forced nonlinear box mode problem for the computational parameters considered here.
In all cases, the observed RMS errors are less than or equal to those noted in the
linear box mode cases (for comparable v and 7). It is quite likely that this reduction
in numerical error, despite going to a problem with nontrivial nonlinearities, is in
some sense associated with a “locking in” of the numerical solution to the applied
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forcing. The quasi-oscillatory nature of the resuitant RMS(4’) error curves—see
especially Fig. 9f—argues for such a process.

6. LINEAR AND NONLINEAR ROSSBY WAvE TESTS

6.1. Formulation

The advected Rossby wave

Plx, 1) -+ —yy — sintkx - Iy = wt), (37
where
w =k(l — ey) (38)
and
k%= [ e

is a solution to both the linear and nonlinear vorticity equations (3). As for the
box modes, we have scaled with respect to d = (2o}~ times the wavelength of the
traveling wave; u, , a characteristic particle velocity; and the time scale (8d) . in the
resulting nondimensional system, the wavelength is 27, and the basin size x5 - =,
where 4 is the number of half wavelengths per box width (a measure of the structure
of the solution). Theoretically it is known that Rossby waves are individually unstable
to small perturbations [34] with an e-folding time proportional to (¢) 1. This growth
time scale is comparable in all cases to the entire duration of the experiment. {Due to
the absence of large-amplitude perturbations (or *‘noise™) that can cfiicicntly extract
energy from the primary wave, it is cunlikely that purely physlia instabilities—as
opposed to computational ones -play a role in the following results. The reader
should note that the nonlinearity of these model problems is trivial (that is, self-
canceling) when v = 0.

6.2. Finite-Difference Model Results
(Table 1, Cases 13-28; Figs. 10-12, 14-16)

The resuits for one linear Rossby wave experiment in which (v, %, €)
(32/3.5, 128, 0) are listed in Table 1, case 13. Variations in the RMS error measures as
functions of » and » did not differ from the comparable dependencies noted for the
linear box modes—see Section 4.5—and hence will not be reiterated here. The one
substantive difference between these and the other linear problems is that RMS(¥"
and RMS({’) are not strictly linear in time but appear to be leveling off at # - 5
periods.

With no mean flow and moderate nonlinearity, (e k,/, y) = (0.4, 3/13%72,
2/1312 0), the RMS errors of the FD simulations are characterized by very small
temporal, relative to spatial, errors. At the pivotal resolution (v, 7} - = (32/3.5, 64).
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Fig. 10. Nonlinear Rossby waves at ¢ = 5 periods with (, 0, &, [, €, y) = (32/3.5, 64, 3/13/2
2/13172, 0.4, 0.0). (a, b), (£, #): FD model, CI = (0.2, 0.2); (¢, d), (£, #): FE model, CI = 0.2, 0.2);
(e, D), (£, ¥): PS model, CI = (0.2, 0.2), filtered.
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0.006

Fig. 11. As Fig. 10. (a, b), (¢, ¥"): FD model, CI = (0.04, 0.04); (¢, d), (¢, ¥): FE modei,
CI == (0.05, 0.02); (e, ), (¢, #'): PS model, CI = (8.0 x 1073, 6.0 x 10-%), filtered.
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A5~ A5

0 5 10 15 2025 30 35 40 0O 5 10 15 20 25 30 35 40
{a) (b)

Fic. 12. As Fig. 10, 0 < ¢ < 5 periods. (a, b), RMS(’, 4): FD model; FE model; PS model,
filtered.

RMS(4") =~ RMS({') ~ NDIF(NRG) = 0(14 %) after five periods. The manifes-
tation of error in these simulations are perturbation fields closely resembling box
modes which begin to destroy the plane wave nature of the solution after a few periods
(Figs. 10a,b and 11a,b). This form for the error fields appears to be independent of
v and %. Their amplitude, as stated previously, depends sensitively on » but not on 5
for those values considered here. (In addition, other simulations—cases 16, 20, and
22~—show that RMS(yy') and RMS({’) also depend on the orientation of the reference
wave so that cancellation of time and space errors can sometimes occur.) The RMS
error measures typically grow quasi-lincary—e.g., see Figs. 12a,b—though in some
cases there is a tendency for the rate of error growth to slow toward the end of the
simulation. Lastly, the change in the integrated kinetic energy of the system is
0(—10%,), somewhat larger than that observed in the nonlinear box mode problems
for comparable v and 7.

For e = 0.8 and (v, 9, k, I, ) = (32/3.5, 128, 3/13%/%, 2/131/2, 0), the same quali-
tative remarks apply. The field of {" does, however, begin to show some noticeable
grid-scale variability in comparison to its rather smooth modelike appearance for
€ = 0.4. The associated values of RMS(¥}") and RMS({") are comparable to those for
e =04

With the addition of a mean flow (y = 0), the FD model actually becomes more
accurate, perhaps reflecting the increased smoothness of the ¢ field (Fig. 14b). With
y = 0.5, the FD model delivers a stable solution with an accuracy of G(209%) in
vorticity, but only O(3—4 %) in both streamfunction and energy (Table I, case 17).
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For a mean flow of the opposite sense (y = —0.5), the errors are compardblc or
-h g-.d...._l_.__.i VA YRS M - 1

fields of 4" and ¢’ are dominated by large-scale box modelike features. Similar remarks
hold for Rossby waves of different orientation.

6.3. Finite-Element Model Results
(Table 1, Cases 13-28; Figs. 10-12, 14--16)

The results of the FE linear Rossby wave calculations are as expected from Sections
4.3 and 6 With (v, 9, &, [, y) ~= (32/3.5, 128, 3/13%/2, 2/131/2 (), RMS(') <
RMS({) £ ()(‘ %) at the end of five periods of integration (Table I, case 13). In fact,
R\/IS(L ) has nearly stopped increasing altogether though RMS(g/;) continues to rise

field. Frrors in the vorticity are resident at somewhat smaller scales. Consider, for
instance, Figs. 10c,d and 1lc,d, which show the total and perturbation fields, respec-
tively, at the end of a five-period integration with (v, n, ¢, k, /, ) = (32/3.5, 64, 0.4,
31312, 2:1312,0). For this case, the FE model has errors of O(9 %)), a significant
improvement over the second-order FD results which, as remarked, have a large
component of spatial truncation crror. On the contrary, the FE errors are most
sensitive to changes in 7, at least in the parametric neighborhood of our pivotal
calculation (Table 1, cases 14-16).

Quantitatively similar statements can be made for simulations at higher Rossby
number - case 19, ¢ = 0.8—and in the presence of mean advection—cases 17 and 18,
v = 00.5. {Note that the latter differ from the nonadvected Rossby waves in that
they have nontrivial nonlinearities.) As with the FD model, neither the increase in «
nor the inclusion of mean advection seriously increases the RMS errors of the FE
model. As a resalt, for constant v and # (spatial and temporal resolution), RMS() -
0(1-4°.) and RMS({) = 0(3-10%) after five periods (Table I, cases 16-19). The
error growth is quite consistently nearly linear (Figs. 16c,d) with the perturbation
streamfunction appearing at the largest (basin) scales although in & somewhat less
organized pattern than the box modelike features noted with (e, v) == (0.4. 0)--
Figs. 11d and 15d.

6.4. Pseudospectral Model Results
(Table 1, Cases 13-28; Figs. 10-16)

For 0.4 - € £ 0.8, the spectral model suffers eventual numerical instability at
some ¢ - 5 periods. Figure 13a shows a typical example where (v, 7, ¢, ) ==
(16/3.5, 128, 0.4, 0). By t+ = 1.5 periods, the total vorticity is dominated by small-scale
noise; catastrophic failure of the numerical experiment occurs shortly thereafter.
The most intense grid-scale vorticity features occur at one or more points on the
boundary, but the noise is also substantial in the interior along a line normal to that
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(e) ' (f)

Fic. 13. As Fig. 10. (a, b), (£, ¥): PS model, 7 — 2.5 periods, CI = (0.6, 0.2); (c, d), (L, ¥):
PS model, ¢ = 2.5 periods, filtered, CI — (0.2, 0.2); (¢, ), (¢, ¢): PS modecl, ¢+ = 5.0 periods, filtered,
CI = (0.2, 0.2).
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\

{e) (f)

Fic. 14. Nonlinear Rossby waves with (v, 7, k, I, €, v) = (32/3.5, 64, 3/13%/2, 2/13'%, 0.4, 0.5).
(a, b}, (¢, #): FD model, f = 5 periods, CI = (0.2, 0.7); (¢, d), (, 4): FE model, t =5 periods,
CI = (0.2, 0.7): (e, D), (L, ¢): PS model, = 5 periods, CI = (0.2, 0.7), filtered.
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0.04 (eXe]]
(c) (d)

Fic. 15. AsFig. 14. (a, b), (', #"): FD model, r = 5 periods, CI = (0.07, 0.03); (¢, d), (¥, ¢):
FE model, # = 5 periods, CI = (0.04, 0.01); (e, 1), (£, 4"): PS model, ¢ = 5 periods, CI = (0.01,
5.0 x 10-3), filtered.
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point. This is undoubtedly due to the nature of the spectral expansion which ties
points together in just such a manner. The ultimate origin of the PS instability is not
known. The site of the instability, for instance, is random and not simply related to
the imposed patterns of inflow/outflow along the domain margins.

It has been discovered cmpirically, however, that periodic spectral filtering effectively
controls the generation and accumulation of grid-scale vorticity, and prevents numer-
ical instability in these nonlinear Rossby wave experiments. Figure 13 shows the
effect on onc such pivotal calculation. By ¢t = 1.5 periods, { is entirley dominated
by two regions of high-wavenumber noisc in the unfiltered calculation. When the
simulation is redone with filtering, however, the Rossby wave is easily advanced in
time to ¢ = 5 periods. The final field is quite free of grid-scale noise {Figs. 102,f
and 14e,f).

Filtering of this kind stabilizes a wide range of nonlinear Rossby wave calculations

R —— ’

-

rable FD test and somewhat smaller than those given by the FE model. RMS(")
and RMS({") grow linearly in time [perhaps with some initially large value of the
errors duc to the filtering] (Figs. 12 and 16). There is very little accumulation of
unresolvable features in the vorticity tfield (Figs. 10¢,f and l4e.f). The removal of
these small-scale features by filtering does not, however, seem to have a sirong etiect
on the energy of the system.

ARASL SASATRARAS SASSS AARS SEARE RASMA sazns naasdl RS EARAR SAAMN G230 LALEL AARSE SRS SRS RARE2 anAR)
5 10 15 20 25 30 35 4C 45 50 5 10 15 20 25 30 35 40 45 50
(a) (5)

Fic. 16. As Fig. 14, 0 < ¢ < 5 periods. (a, b), RMS({’, ¢'): FD model; FE model; PS modcl,
filtered.

581/34/1-4
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6.5. Intercomparison

The parametric results of the linear Rossby wave calculations confirm the conclu-
sions of Section 4.5 in which it was noted that the FE and PS models were in general
more accurate than the FD code, except for certain optimal choices of the compu-
tational parameters v and %. In addition, the orientation of the Rossby wave has a
strong influence on the RMS errors of the FD model. All three models are stable for
e = 0.

When nonlinearity is admitted, however, the finite-difference and finite-element
models are alone capable of delivering stable and accurate calculations of moderate
duration (¢ <C 5 periods) over a broad range of parameters. The spectral model is
typically unstable in these instances unless it is supplemented by periodic spectral
filtering of the vorticity field.

As a preliminary test of the response of the finite-difference and finite-element
models to the addition of a scale-selective vorticity filtering mechanism, we have
redone FD and FE experiments 16, 17, and 19 and FE experiment 7 with the appli-
cation at each time step of a 16th-order Shapiro filter [35]. The results of these com-
parisons indicate that the RMS errors of the FE calculations are generally lowered
somewhat by the addition of filtering (particularly RMS({’), whose smaller scale
components are being eliminated by the filtering) and its instabilitics delayed (but
not removed). The opposite, namely an incrcase of error with the application of
filtering, is often true of the FD simulations. It is not obvious why this should be the
case unless the computational boundary condition used in the FD formulation
interacts in some systematic way with the applied filtering.

It is of interest to note, however, that all three models (perhaps with some distri-
bution of wavenumber selective filtering) can be made to yield accurate solutions to
these open domain problems. In fact, the models have error accumulation character
istics not greatly different than those noted in closed-basin problems. Specifically,
the FE and PS models are many times more accurate for given v and v than the FD
model, with the PS being overall the best. Even taking into account the increased
efficiency of the finite-difference scheme (Table 11), the diffeernce between the second-
order and higher-order methods is significant. It is estimated that the FE (N = . 33)
and PS (N = 17) models are, on the average, 4 and 15 times more accurate, respec-
tively, than a FD model with N ~ 43 for which the running times of all three models
would be approximately equal.

7. SUMMARY AND CONCLUSION

We have integrated the inviscid barotropic vorticity equation under a variety of
assumed initial and boundary conditions corresponding to linear and nonlinear box
modes, forced nonlinear box modes, and linear and nonlinear Rossby waves. The
former two classes of problems are defined within closed domains; the latter is totally
open with respect to a presupposed external environment and thereforc rcpresents
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prototype limited-area calculations for the ocean. Each problem has been solved
using second-order finite-difference, fourth-order finite-clement, and infinite-order
spectral approximation techniques. For each of the three models a series of calcu-
lations was performed to determine its accuracy, stability, and efficiency as functions
of problem type and the associated physical and computational nondimensional
parameters. The most important of these parameters are e, the Rossby number,
and v and 1, nondimensional measures of the spatial and temporal resolutino of the
numerical approximation. The accuracy of model results was determined, wherever
possible, by comparing to known analytic or reference solutions. RMS measures of
the errors in the computed values of vorticity, RMS({"), and streamfunction.
RMS(4'), and a measure of the gain or loss of globally integrated kinetic cnergy,
NDIF(NRG), were tabulated. Integrations of moderate length (5--10 periods of the
reference solution) were performed as an empirical measure of the functional depen-
dence of model stability on the parameters. As a result of these calcuiations, we are
able to make model-model intercomparative statements for a sequence of lincar and
nonlincar problems in open, as well as closed, domains. To our knowledge, suck
intercomparisons have not previously been made. A more lengthy summary of the
parameters and error norms can be found in Section 2. A complete discussion of
results has been given in Sections 4-6 and Table 1.

These tests have shown that all three models are capabie of delivering cfficient
iong-term solutions of acceptable accuracy to linear and weakly nonlinear problems
in both closed and open domains. The results also suggest that given a judicious
selection of frictional (filtering) mechanism and/or computational boundary con-
dition, each of the models can be made comparably accurate for highly nonlinear
calculations. {This hypothesis is being tested in a related series of experiments.) We
conclude, therefore, that any of the physical/numerical models investigated here -
modified perhaps by additional dissipative or boundary condition assumptions-
could be used for the limited-area modeling applications mentioned in the
Introduction.

Under the assumption of inviscid dynamics, the operational performance of the
three models is most sensitively related to the Rossby number, e. For 0 -7 ¢ £ 0.2.
all the models arc stable in the long term. Furthermore, unless an optional choice of
v and 7, the nondimensional space and time steps, is made, the spectral and finite-
element models are the most accurate, and the finite-difference the least. That this
ranking reflects the formal spatial accuracies of the models has been demonstrated
by a simple phase error analysis for the linear box mode problems - Section 4.2.
The net result of this increased accuracy is that, for a given admissable crror, both the
I and PS models arc many times more efficient than the FD model {Section 6.5},
These conclusions are valid independent of problem class.

Although the PS (and to a lesser degree the FE) models are susceptible to cventual
numerical instability characterized by the catastrophic accumulation of grid-scale
vorticity features. it has been found that stability can often be maintained, and errors
reduced, by a periodic filtering (smoothing) procedure. The RMS error norms of the
FE (but not always the FD) mode! are also reduced with the application of a scale-
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selective (Shapiro-type) vorticity filter. Related calculations not reported here have
validated the use of these higher-order filtering mechanisms over a wide range of
problems. The important point here is that even relatively ad hoc removal of small-
scale vorticity prolongs the useful length of integration and increases the accuracy
of highly nonlinear simulations.

Lastly, we reiterate the fact that these test calculations do not provide—and were
not intended to provide—a definitive comparison of finite-difference, finite-element,
and spectral approximation techniques per se. (A fourth-order finite-difference model,
for instance, would have fared much better against the finite-clement code.) What
they do tell us, and what was not known beforehand, is that all three numerical
procedures can be made to yield stable and accurate solutions to these idealized
open ocean problems. More importantly, the FD, FE, and PS techniques appear
to retain their relative formal accuracies in spite of the much more formidable physical
and numerical problem that these limited-area calculations represent.

ApPENDIX |

Implementation of the Sundstrom|Davies Boundary Condition

Consider a region near the boundary with the following local ordering.

7 6 5
8 0 4
1 2 3

The vorticity equation applied at point 0 will involve vorticity values on the other
eight numbered points.

8
o= G = —j—'}c(s&f — ) — QY L, (A1
r=1

where Q = edt/h? and J, is the Arakawa Jacobian term for the rth point evaluated
at point 0. \
The Sundstrom/Davies closure for boundary point 2 is

o+ BT =00+ LR (A2)
1 can be eliminated from (A1) and (A2) and the result can be written:

QJ1C1k + (1 -+ sz) gzk -+ stgsw - Rz ’ (A3)
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where

5 . At , 8 :
Ry =207 — [ F — e W' — s — 0 Y J.L5 (Ad)
r=4

In this numerical procedure, the interior vorticity and streamfunction are com-
puted before the boundary vorticity. Equation (A3) is arranged so that R, contains
only known quantities. For each point along a boundary (but not at corners), (A3)
applies.

Were it not for corner points, the system of Eq. (A3) would be of tridiagonal form

------ = o 17N T

7 6 5
8 Q 4
1 2 3

For the boundary condition at the corner, we take the spatial average along the
diagonal

o O =G G (A%

It would seem that near corners a pentadiagonal system is required since the Jacobian
evaluated at 0 involves the five unknown boundary values at points 1 through 5.
However, the Sundstrom/Davies conditions at points 2 and 4 are

A T (A6)
and

§+1 -+ CQH = Czk + C'zk- (Aj}
Thus,

GFf = G 4 G — §6® (A8)
and

5406 == 3“” + £7w - Zs”- (Ag}

This means that boundary points which are corner neighbors can be expressed in terms
of the corner vorticity and known values. Equations (A8) and (A9) are applied in
conjunction with the equations requiring vorticity values of the corner neighbor, i.e.,
the corner and the two boundary points 24 from the corner.
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The unknowns in the tridiagonal system are given a cyclic ordering excluding the
corner neighbor points.

3K+1 3K ceereceencn--. 2K+3 2X+2 2K+1
3K+2 2K
3K+3 :
: K = M-3
K+3
4K K+2
1 2 3 X-1 K K+1

In the diagram the ordering is started in the southwest corner, and (A3) is a
tridiagonal system with cyclic boundary conditions since points 1 and 4K are con-
nected. By a reordering of the points, the tridiagonal cyclic system can be transformed
into a pentadiagonal system which requires twice the computation time of a tridiagonal
system.

At inflow points, the vorticity is known and (A3) is replaced by

LF = G, (A10)

where {g* is the specified value. If the origin of the ordering (the southwest corner in
the diagram) were inflow, the off-tridiagonal terms expressing the cyclic nature
vanish and we are left with a simple tridiagonal system. If the southwest corner is not
inflow, renumber the boundary point

i’ = (- L —1)mod(4K) 4- 1,

where L is an inflow point. Finally, the values at the eight corner neighbor points are
obtained from (A8) and (A9), or specified if inflow.
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